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Abstract 
This document paper provides annual changes in standardized catch per unit of effort (CPUE: 

catch number per 1,000 number of hooks) for shortfin mako caught by longline fishery of 

Japanese training and research vessels during 1994 and 2022 in the western and central North 

Pacific. Since the reporting rates of sharks during 2001 and 2013 are clearly lower than those 

before 2000, the author removed the data with lower reporting rates using a statistical filtering 

method based on the prediction of the binomial generalized linear model (GLM). The 

nominal CPUE was then standardized using spatio-temporal generalized linear mixed models 

(GLMMs) to provide the annual changes in the abundance indices in the North Pacific Ocean. 

The estimated abundance indices of shortfin mako revealed a flat trend from 1994 to 2005, 

and then showed two times up- and down- trends for 2009-2013, 2013-2017 and was stable 

thereafter. The CPUE trends estimated from the fishery-independent data widely collected in 

the North Pacific Ocean is a very useful information about the abundance in this region. 

Introduction 

The National Research Institute of Far Seas Fisheries in Japan has been collecting the 

research and training vessel (JRTV) data since 1992. The JRTV data was collected from the 

research vessels belonging to, or chartered to, national or prefectural fisheries research 

institutes, and vocational training vessels attached to fisheries high schools throughout Japan. 

The JRTV commonly operates the water around Hawaii due to reputedly calm sea conditions 

and the attractiveness to students of Honolulu port call (WCPFC, 2011). Although this survey 

is not well designed for spatiotemporal changes in the operational patterns, this survey is 

fishery independent and there is no issue about the targeting shift and the significant 

differences of the catchability by ships. In addition, it is expected to report the data with 

accuracy. However, past examination of the data revealed that reporting rate for sharks 

defined by the number of sets recorded with sharks divided by the total number of sets for a 

trip (Nakano and Clarke, 2006) appeared to decrease after 2000, and it suggested that JRTV 

had released or discard sharks without recording them (WCPFC, 2011).  

 

In the previous stock assessment in 2017, a statistical filtering method was used to remove 

unreliable set-by-set data collected by JRTVs during 2001 and 2013 (Kai, 2017a). The 

nominal CPUE of the JRTVs was then standardized using two-part model (Zuur et al., 2009) 

to account for the occurrence of excess zeros (Annual mean: 85% of zero catch) and small 
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dispersion ratios (variance/mean) of the catch for shortfin mako (Annual mean: 1.54). A 

binomial and a Poisson (PO) generalized linear model (GLM) was applied to the first and 

second stage of the two-part model, respectively. The two response variables (positive catch 

ratio and mean CPUE for positive catch) were then combined to calculate the annual trends 

in the abundance indices of shortfin mako in the western and central North Pacific. The 

CPUE was used in the stock assessment in 2018 based on the statistical soundness, long time-

span, extensive spatial coverage, and reliability of record. However, one of the issues was 

insufficient CPUE modeling regarding the main interaction term such as a year and area due 

to a lack of data for some subarea in some years. The subareas used in the GLM were too 

large to explain the influence of the spatio-temporal changes in the catch rate. To address this 

issue, spatio-temporal generalized linear mixed model (GLMM) was applied to the JRTV 

data (Kai, 2019). The spatio-temporal model enables us to predict the spatial changes in 

species distribution and temporal variations in a population range and density in a fine scale 

such as a resolution of 1 x 1 degrees, based on spatial and temporal autocorrelation among 

catch rates and correlations with various biotic and abiotic environmental factors (Thorson, 

2019; Thorson and Barnett, 2017; Kai, 2017b). The spatiotemporal model therefore may 

yield more precise, biologically reasonable, and interpretable estimates of abundance than 

the commonly used design-based models or spatially stratified models (Shelton et al., 2014; 

Thorson et al., 2015; Cao et al., 2017).  

 

The main objective of this study is to provide the annual changes in catch rates of shortfin 

mako in the western and central North Pacific using the spatio-temporal GLMMs with 

fishery-independent data (i.e., longline logbook data of JRTVs). This information may 

contribute to improvements in the stock assessments of North Pacific shortfin mako through 

an understanding of the spatial and temporal changes in the hotspots and temporal changes 

in catch rates. Firstly, temporal changes in the reporting rate are analyzed and unreliable set-

by-set data are removed using the same statistical filtering method as applied in the previous 

analysis. Secondly, the nominal CPUE is standardized using the spatio-temporal GLMMs for 

filtered data during 1994 and 2022.  

 

Materials and Methods 

Data sources 
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This study used the longline logbook data mainly collected from JRTVs in the western and 

central north Pacific (mainly 0–40 °N and 130 °E–140 °W) from 1994 to 2022 (Fig. 1). To 

be consistent with the time-period of late time series of Japanese longline fishery, the JRTVs 

data after 1993 was used. Set-by-set operational data used in this study includes information 

on species of pelagic sharks, operation time (year, month), catch numbers, amount of effort 

(number of hooks), number of branch lines between floats (hooks between floats: HBF) as a 

proxy for gear configuration, location of sets by latitude-longitude resolution of 1° × 1°, and 

trip identity. Deep-set data was used in this analysis because the JRTVs mostly use deep-sets. 

A deep-set is identified by the number of HBF, which determines fishing depth (Nakano et 

al., 1997). A deep-set fishery was defined as one that uses a large number of HBF (6–16 

hooks). The number of HBF with the most catches for SFM was between 12 and 13, and a 

small change in gear configuration was observed (Fig. A1). The four seasons (quarters (Q) 1 

to 4) of the year were defined as follows: Q1 was spring from January to March; Q2 was 

summer from April to June; Q3 was fall from July to September; and Q4 was winter from 

October to December. 

 

Data filtering 

Incomplete and insufficient data were filtered, as were sets that have little or no information 

about HBF and locations (latitude and longitude), numbers of hooks that were less than 800, 

HBF that were less than 6 (i.e., shallow-sets), and operations that were conducted in waters 

other than the North Pacific. In this document paper, this filtering step is referred to as 

“preliminary filtering”. In addition, to remove errors and biases of the set-by-set data caused 

by under-reporting of actual shark catches, unreliable set-by-set data were further removed 

based on the information on shark presence in the catch (Kai, 2019). The author applied the 

statistical filtering method based on a GLM with binomial error distribution to JRTV data 

from 2001 to 2013 to accommodate a clear decline in annual reporting rates during this period 

(upper figure of Fig. 2). In this document paper, this filtering step is referred to as “follow-

up filtering”. The details of the filtering method can be seen in the previous papers (Kai, 

2017a; Kai, 2019) 

 

CPUE standardization with spatio-temporal model 

In the previous analysis (Kai, 2019), the zero-inflated Poisson (ZIP) and zero-inflated 

negative-binomial (ZINB) model were used, and the ZINB model was selected as the most 
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parsimonious model. ZINB model is therefore solely used in this study. The spatio-

temporal ZINB model is consisted of two components of encounter probability and positive 

catch in a delta model. The first predictor was models using a binomial model to account for 

the encounter probability of low positive catch (mean positive catch rate = 15 %). However, 

the random effects were not used because of the convergence issue. Second predictor was 

modeled using a negative binomial (NB) model to account for the count data with over-

dispersion (variance/mean =1.52): 

𝑐~ 𝑁𝑒𝑔𝐵𝑖𝑛 (𝑐∗, 𝑐∗(1 + 𝜎ଵ) + 𝑐∗ଶ𝜎ଶ), 

log  (𝑑) = 𝑑଴(𝑡) + 𝛾(𝑠) + 𝜃(𝑠, 𝑡) + 𝜀(𝑣) + ∑ 𝛽(𝑗)
௡ೕ

௝ୀଵ
× 𝑥(𝑗),     (1)  

where c is observed catch, NegBin (a, b) is a negative binomial distribution with mean a and 

variance b (Lindén and Mäntyniemi, 2011), 𝑐∗ is an expected catch and a function of density 

𝑑  and fishing effort 𝑓 (number of hooks = 1),  σ1 and σ2 are residual variations, 𝑑଴(𝑡) 

represents temporal variation (the intercept for each year t), 𝛾(𝑠) represents spatial variation 

(s), 𝜃(𝑠, 𝑡)  represents spatio-temporal variation (station s and year t), 𝜀(𝑣)  represents 

random variation in catchability for the 𝑣  th vessel, and 𝛽௝  represents the impact of 

covariate 𝑗 with value 𝑥௝ on catchability. The three-month quarters and HBF (i.e. 𝑛௝ = 2, 

𝑥௝ = 𝑞 𝑎𝑛𝑑 𝑙) are used as covariates (changing the catchability) corresponding to Eq. (1). 

 The VAST (v3.10.1) was used to standardize the nominal CPUE. Temporal 

abundance index I was estimated as: 

 𝐼(𝑡) = ∑ 𝑓(𝑠)௡ೞ
௦ୀଵ × 𝑐∗(𝑠, 𝑡)/{∑ ∑ 𝑓(𝑠)௡ೞ

௦ୀଵ × 𝑐∗(𝑠, 𝑡)}
௡೟
௧ୀଵ ,   (2) 

where ns is total number of knots at location s. The number of knots (ns = 400) was specified 

in a balance between computational speed and spatial resolution. 

   

Model selection and diagnostics 

To select the best model, the explanatory variable was sequentially added to the random 

effect model. The best model was selected using the AIC (Akaike, 1973) and BIC (Schwarz, 

1978). Given the different model is selected by AIC and BIC, the model selected by BIC is 

chosen to avoid the overfitting that the AIC tends to choose the complex model with a large 

number of data (Shono, 2005).  For the best model, the goodness of fits was examined using 

the Pearson residuals and QQ-plot. The residuals were computed using a randomized quantile 

(Dunn and Smyth, 1996) to produce continuous normal residuals.  
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Results 

For the analyses of the follow-up filtering, the model including the factor of month, latitude 

by 5 degrees, and longitude by 5 degrees was selected by BIC as the most parsimonious 

model (Table A1). The lower and upper 95% confidence intervals of shark reporting 

reliability (SR) for 1994-2000, 2014–2022 were estimated as 0.925 and 1.263, respectively, 

and the lower bound was used as a cut-off point (Fig. A2). The threshold (i.e., 0.925) 

appeared to be reasonable because the reduction of catch rates between 2001 and 2013 

disappeared (lower panel of Fig. 2). The preliminary filtering reduced the number of records 

for this analysis from 39,571 sets to 35,421 sets. The follow-up filtering reduced the number 

of records for this analysis from 35,421 sets representing 1,469 trips to 30,803 sets 

representing 1,256 trips. The differences of annual changes in number of catch, number of 

hooks, and nominal CPUE between the data with and without follow-up filtering are shown 

in Fig. A3.  

 

Selection of the best model  

All models except for M1 and M2 were reasonably converged with the positive definite of 

hessian matrix and a small value of maximum gradient (Table 1). The model (M-7) including 

spatial (station), spatio-temporal variances (year and station) and overdispersion (vessel 

effects) as random effects and year and quarter as fixed effects were identified by AIC and 

BIC as the most parsimonious model (Table 1). The estimated CPUE changed substantially 

if random effect components were sequentially added to the simplest model (M_1) which has 

no random effect (Fig. 3). Diagnostic plots of goodness-of-fit for the best model didn’t show 

serious deviations from normality and model misspecification (Fig. 4). These results 

suggested that the fitting of the best model to the data was good. Lists of all parameters and 

estimates of the best models are shown in Table 2.  

 

Temporal trends in CPUE 

The estimated annual changes in the CPUE of shortfin mako revealed a flat trend from 1994 

to 2005, and then showed two times up- and down- trends for 2009-2013, 2013-2017 and 

was stable in recent years (Fig. 5). The 95% confidence intervals were wider in 1999, 2007, 

2015, and 2021 compared to those in the other years (Fig. 5).  
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Spatio-temporal trends in CPUE 

The annual spatial maps of predicted CPUE clearly showed that the higher CPUEs of shortfin 

mako at the higher latitudes (30-40° N, 130° E -160° W) in the temperate water (Fig. 6). 

Meanwhile, the lower CPUEs of shortfin mako were observed in the sub-tropical and tropical 

areas, however, the CPUEs in the north-east water near Hawaii islands were higher. These 

results suggested that the shortfin mako prefer to staying in the temperate water in the western 

and central North Pacific Ocean. 

 

Discussions 

This study presented the annual changes in the standardized CPUE of shortfin mako caught 

by longline gear of JRTV in the North Pacific from 1994 to 2022. The data with lower 

reporting rates was removed and the nominal CPUE was standardized using spatio-temporal 

GLMM models. The filtering appeared to be reasonable because the lower reporting rates by 

vessel-trip between 2001 and 2013 were disappeared (Fig. A2). The results of the 

standardization of CPUE suggested that the abundance trends of shortfin mako in the North 

Pacific appeared to be stable in recent years but the CPUE level was lower than those in 

1990s and 2000s (Fig. 5). Although JRTV mainly operate in the sub-tropical and temperate 

areas near Hawaii using deep-set longline gear, the result doesn’t support the slightly 

increasing abundance trends in Hawaii deep-set time series (Calvalho, 2021). This 

inconsistent trends between two CPUEs in addition to the large fluctuations of predicted 

CPUE from 2009 to 2017 in this study might be attributed to shrinkage of operational areas 

around Hawaii islands in recent decade due to the continuous decline of fishing effort of 

JRTV since 2000 (Fig. A3).   
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Table 

Table 1.  Summary of model structure and outputs among different models. All models 

include fixed effects. “Δ” denotes a difference between the value of criteria and the 

minimum value for AIC and BIC.    

 

 

Table 2. List of all parameters and estimates of the selected model.  

 

 

  

Model
Catch rate predictors of random

effect
Fixed effect

Number of
parameters

Deviance ΔAIC ΔBIC
Maximum
gradient

M-1 Null Year 60 28739 3910 3844 < 0.002

M-2 Vessel Year 61 27791 2886 2829 < 0.04

M-3 Stat ion Year 64 25701 880 847 < 0.0003

M-4 Vessel + Station Year 65 25107 287 263 < 0.0001

M-5 Stat ion + Year and stat ion Year 65 25460 641 616 < 0.0001

M-6 Vessel + Station + Year  and station Year 66 24896 79 62 < 0.0001

M-7 Vessel + Station + Year  and station Year + Quarter 68 24813 0 0 < 0.0001

M-8 Vessel + Station + Year  and station Year + Quarter + HBF 70 24815 6 22 < 0.0001

No Parameter name Symbol Type Est imates

1 Distance of correlat ion  (Spatial random effect) κ Fixed 0.0015

2 Variation over vessel σ ϵ Fixed 1.83

3 Northings anisotropy h 1 Fixed 2.10

4 Anisotropic correlation h 2 Fixed 0.93

5 Parameter governing pointwise variance (Spatial random effect) η ɤ Fixed 2.56

6 Parameter governing pointwise variance (Spatio-temporal (year) random effect) η θ Fixed 1.74

7 Residual variation 1 of negative binomial model σ 1 Fixed 0.02

8 Residual variation 2 of negative binomial model σ 2 Fixed 0.19

9 Coefficient of three month quarters for 1st predictor β 1 Fixed 1.13

10 Coefficient of three month quarters for 2nd predictor β 2 Fixed 0.75

11-72 Intercept for year d 0 Fixed Not shown

73 Vessel effect ϵ Random Not shown

74 Spatial residuals γ Random Not shown

75 Spatio-temporal (year) residuals θ Random Not shown
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Table 3. Summary of annual CPUE predicted by spatio-temporal model along with 

corresponding estimates of the coefficient of variation (CV), annual nominal CPUE, and 

number of hooks in millions. CPUEs are predicted using the best fitting model and scaled by 

the average CPUE.  

 

Year 
Predicte

d CPUE 

Nomin

al 

CPUE 

CV 

Number 

of hooks 

(million

s)  

Year 
Predicte

d CPUE 

Nomin

al 

CPUE 

CV 

Number 

of hooks 

(million

s) 

1994 1.09 0.93 0.20 4.83  2011 0.67 0.69 0.19 0.80 

1995 0.99 0.89 0.19 4.63  2012 0.71 0.97 0.17 0.76 

1996 1.03 0.79 0.21 4.52  2013 0.34 0.52 0.11 1.07 

1997 1.03 1.03 0.18 4.25  2014 0.76 0.93 0.19 1.47 

1998 1.09 1.24 0.22 2.76  2015 1.32 1.68 0.36 1.24 

1999 1.33 1.17 0.50 0.86  2016 1.09 1.58 0.23 1.19 

2000 1.37 1.20 0.27 2.73  2017 0.75 0.83 0.17 1.19 

2001 1.01 0.90 0.20 2.69  2018 0.85 1.05 0.22 1.13 

2002 1.10 1.09 0.20 2.89  2019 0.78 1.10 0.24 0.91 

2003 1.17 1.12 0.21 2.66  2020 0.67 0.70 0.23 0.52 

2004 1.10 1.10 0.20 2.89  2021 0.92 0.90 0.33 0.35 

2005 1.09 1.03 0.21 2.08  2022 0.79 0.74 0.28 0.57 

2006 1.37 1.24 0.26 2.08       
2007 1.74 1.08 0.38 1.45       
2008 1.07 1.08 0.24 1.30       
2009 0.86 0.64 0.25 0.67       
2010 0.93 0.77 0.30 0.66       
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Figures  

 

 

Figure 1. Spatial distributions of log-scaled nominal CPUE (upper), fishing effort (number 

of hooks in millions) (middle), and log-scaled catch (lower) combined from 1994 to 2022 for 

shortfin mako in the North Pacific. Each point denotes the location of knot. 
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Figure 2. Boxplots of annual changes in reporting rates of catch for sharks before (upper) and 

after (lower) filtering.  
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Fig. 3 Comparisons of annual predicted CPUE relative to its average among different model 

structures. For the details of the models, see table 1. The horizontal dotted line denotes 

mean of relative values (1.0). M8 was removed from plot due to large annual fluctuations.  
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Fig. 4 Diagnostic plots of goodness-of-fit for the most parsimonious model (M7).  
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Fig. 5 Annual predicted CPUE relative to its average of the best model (M-6). Gray solid 

line denotes nominal CPUE relative to its average, shadow denotes 95% confidence 

intervals, blue solid line denotes standardized CPUE used in the previous assessment in 

2018 and horizontal dotted line denotes mean of relative values (1.0).  
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Fig. 6 Year specific spatial distribution of log-scaled predicted CPUE for shortfin mako 

from 1994 to 2022. Each point denotes the location of knot. 

 

 

Appendix table 
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Table A1. Summary of model selection for binomial model with different combination of 

explanatory variables. Δ denotes the reduction in AIC from the best fitting model. 

 

 

 

 

Appendix figures 

 

 

Figure A1. Annual change in number of hooks between floats and catch number of shortfin 

mako. 

 

Model Binomial model
Number of
parameters

Deviance ΔAIC ΔBIC

M-1 Null 1 5744.9 914 529

M-2 Month 12 5374.6 566 267

M-3 Month +Lon5 35 5080.5 318 201

M-4 Month + Lat5 21 5099.5 309 81

M-5 Month + Lat5 + Lon5 44 4790.0 45 0

M-6 Month + Lat5 + Lon5 + HBF 54 4724.7 0 34
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Figure A2. Number of set against shark reporting reliability for the data from 2001 to 2013. 

 

 

Figure A3. Yearly changes in number of catches, number of hooks (millions) and nominal 

CPUE (/1000hooks) for shortfin mako before (solid line with open circle) and after (broken 

line) filtering.  


