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Abstract 

This working paper provides a standardized CPUE of shortfin mako, Isurus oxyrinchus, 

caught by Japanese offshore and distant-water shallow-set longline fishery from 1994 to 2022 

in the western and central North Pacific Ocean. Since the catch data of sharks caught by 

commercial tuna longline fishery is usually underreported due to discard of sharks, the author 

filtered the logbook data using the simple filtering methods applied to the blue shark in the 

previous analysis. The nominal CPUE of filtered shallow-set data was then standardized 

using the spatio-temporal generalized linear mixed model (GLMM) to provide the annual 

changes in the abundance of shortfin mako in the northwestern Pacific. The author focused 

on seasonal and interannual variations of the density in the model to account for spatially and 

seasonally changes in the fishing location due to the target changes between blue shark and 

swordfish. The estimated annual changes in the CPUE of shortfin mako revealed an upward 

trend from 1994 to 2014, and then downward trend until 2020. Thereafter the CPUE slightly 

increased in recent years. The estimated CPUE trends from the spatio-temporal model with a 

large amount of data collected in the most abundant waters in the western and central North 

Pacific is a very useful information about the abundance of North Pacific shortfin mako. 

 
Introduction 

Shortfin mako, Isurus oxyrinchus, is widely distributed in the world oceans from temperate to 

tropical waters and commonly caught by bycatch of longline fishery targeting tunas, 

billfishes, and sharks. In the previous benchmark stock assessment in 2018, nominal CPUE of 

North Pacific shortfin mako caught by Japanese offshore and distant water shallow-set 

longline fishery for 1994-2016 was standardized using three generalized linear models 

(GLMs) after logbook data was filtered using two-step filtering methods (Kai, 2017). The 

three GLMs includes 1) negative binomial model, 2) zero-inflated negative binomial model 

and 3) zero-inflated Poison model. The zero inflated negative binomial model was selected 

using AIC and BIC as the most parsimonious model. The standardized CPUE of the best 

model was initially considered as a high priority for the full stock assessment in considering 

with the statistical soundness, long timespan, extensive spatial coverage, and relatively high 

catch rates (ISC, 2018). However, further explorations showed that the steep increasing trend 

of this index was inconsistent with all the other indices available, as well as biologically 

implausible given the understanding of shortfin mako’s population dynamics at that time. 

Consequently, the International Scientific Committee for Tuna and Tuna-like Species in the 

North Pacific Ocean (ISC) SHARKWG determined not to include this index in the base case 
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model (ISC, 2018). The SHARKWG acknowledged insufficient analysis for an issue of the 

CPUE standardization on the targeting/fishing strategy shifts from blue shark to swordfish 

and vice versa. In addition, the author acknowledges that the two-stage filtering method for 

logbook data as well as design-based GLM analysis have a fundamental issue on the CPUE 

standardization.   

 

The VAST (Vector Autoregressive Spatio-Temporal) software package for R (Thorson, 

2019), which enables us to analyze fishery data using the spatio-temporal generalized linear 

mixed model (GLMM) (Thorson, 2019), has attracted attention as a novel approach and is 

now commonly used globally to predict spatial changes in species distribution and temporal 

variations in a population range and density. The basic model structure of VAST adopts a 

delta-GLMM which can consider spatio-temporal correlations among categories such as a 

species. Indeed, the spatio-temporal model was applied to the estimation of abundance from 

multi-species fishery data accounting for spatio-temporal variation and fisher targeting 

(Thorson et al. 2017). This fact implies that the multispecies spatio-temporal model has a 

high potential to improve the CPUE standardization of the shortfin mako caught by Japanese 

shallow-set longline fishery in the western and central North Pacific. However, the multiple 

reports from the Japanese skipper’s notes revealed that the Japanese shallow-set longline 

fleets only changed their operational area by season without changing the gear configurations 

(e.g., hooks between floats and length of the blanch line) even if they changed their target 

species. The main reason why the previous authors (Hiraoka et al., 2016; Kai and Shiozaki, 

2016; Kai, 2017) directly considered the target effects in the CPUE standardization is that the 

GLM commonly requires to provide a spatial area with a low resolution (e.g., four areas) in 

the analysis. Therefore, they directly included the target effect in the model as it was 

impossible to directly explain the spatio-temporal changes in the operational area using the 

GLM. If a single-species spatio-temporal model can account for the seasonal and interannual 

variation in the spatial changes of the density with higher spatial resolutions, it is reasonable 

to use the spatio-temporal model for the CPUE standardization without directly considering 

the target effect in the analysis. Recently, Thorson et al. (2020) developed such a model and 

Kai (2021) applied the model to the North Pacific blue shark, Prionace glauca.  

 

The objective of this working paper is to estimate the standardized CPUE of shortfin mako 

caught by Japanese offshore and distant-water shallow-set longline fishery for 1994-2022 

using the spatio-temporal GLMM in consideration with seasonal and interannual changes in 
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the density.    

   

Materials and Methods 

Data sources 

Set-by-set logbook data 1994 to 2022 from Japanese offshore and distant water longline 

fishery were used. Set-by-set data used in this study included information on catch number, 

amount of effort (number of hooks), number of branch lines between floats (hooks between 

floats: HPF) as a proxy for gear configuration, location (longitude and latitude) of set by 

resolution of 1 × 1 degree square, vessel identity, fishery type (offshore or distant water), and 

the prefecture in Japan where the longline vessels were registered. The offshore-water fleet 

was defined by tonnage of vessels between 20 and 120 MT, while the distant-water fleet 

consisted of vessels larger than 120 MT. The four seasons (quarters (Q) 1 to 4) of the year 

were defined as follows: Q1 was spring from January to March; Q2 was summer from April 

to June; Q3 was fall from July to September; and Q4 was winter from October to December. 

 

Simple data filtering 

To remove set-by-set logbook data of mis- and under- reporting or discarding for pelagic 

sharks, simple data filtering method was employed. The data was filtered by 1) type of 

fishery and size of vessel (Japanese offshore and distant-water commercial longliner with 

more than 20 vessel tonnage: “Enyo and Kinkai” fisheries), 2) reporting ratio of pelagic 

sharks by cruise (more than 94.6%), 3) registered prefectures ("Tohoku, Hokkaido and 

Toyama" regions), 4) depth of gear-setting (i.e., number of hooks between floats; HBF: 3~5) 

and 5) temperate water in the western and central North Pacific Ocean (north of 20°N and 

west of 160°W). The data filtered by these conditions has a characteristic that the fleets target 

pelagic sharks such as a blue shark, Prionace glauca, in the western and central North Pacific 

Ocean, and the fleets land shortfin mako at the Japanese fishing ports. This simple data 

filtering was justified through comparing with the annual trends in nominal CPUE of shortfin 

mako caught by “Kesennuma” fleets (see Kai, 2023).   

 

CPUE standardization with spatio-temporal model 

The spatio temporal model was consisted of two components of encounter probability and 

positive catch in a delta model. The first predictor was modeled using a binomial model to 

account for the encounter probability (mean positive catch rate = 55 %), however, only the 

intercept (constant for all year) was considered in the model due to the issue of convergence 
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for the random effect model. Second predictor was modeled using a negative binomial (NB) 

model to account for the count data with over-dispersion (variance/mean =8.8): 

𝑐~ 𝑁𝑒𝑔𝐵𝑖𝑛 (𝑐∗, 𝑐∗(1 + 𝜎ଵ) + 𝑐∗ଶ𝜎ଶ), 

log  (𝑑) = 𝑑଴(𝑡) + 𝛾(𝑠) + 𝜔(𝑠, 𝑞) + 𝛿(𝑠, 𝑦) + 𝜃(𝑠, 𝑡),      (1)  

where c is observed catch,  NegBin (a, b) is a negative binomial distribution with mean a and 

variance b (Lindén and Mäntyniemi, 2011),  𝑐∗ is an expected catch and a function of density 

𝑑  and fishing effort 𝑓 (number of hooks = 1),  σ1 and σ2 are residual variations, 𝑑଴(𝑡) 

represents temporal variation (the intercept for each year-season t), 𝛾( 𝑠) represents spatial 

variation (s), 𝜔(𝑠, 𝑞) represents spatio-temporal variation (station s and season q), 𝛿(𝑠, 𝑦) 

represents spatio-temporal variation (station s and year y), and 𝜃(𝑠, 𝑡)  represents spatio-

temporal variation (station s and year-season t). The intercept 𝑑଴(𝑡) were decomposed into 

season and year main effects and an autocorrelated interaction of season and year were used 

to specify the interpolation for season-year combinations (Thorson et al., 2020).  

 

The VAST (v3.10.1) was used to standardize the nominal CPUE. Temporal abundance index I 

was estimated as: 

 𝐼(𝑡) = ∑ 𝑓(𝑠)௡ೞ
௦ୀଵ × 𝑐∗(𝑠, 𝑡)/{∑ ∑ 𝑓(𝑠)௡ೞ

௦ୀଵ × 𝑐∗(𝑠, 𝑡)}
௡೟
௧ୀଵ ,   (2) 

where ns is total number of knots at location s. The number of knots (ns = 100) was specified 

in a balance between computational speed and spatial resolution. 

   

Model selection and diagnostics 

To select the best model, the explanatory variable was sequentially added to the year-season 

random effect model. The best model was selected using the AIC (Akaike, 1973) and BIC 

(Schwarz, 1978). Given the different model is selected by AIC and BIC, the model selected 

by BIC is chosen to avoid the overfitting that the AIC tends to choose the complex model 

with a lot of data (Shono, 2005).  For the best model, the goodness of fits was examined 

using the Pearson residuals and QQ-plot. The residuals were computed using a randomized 

quantile (Dunn and Smyth, 1996) to produce continuous normal residuals.  

 

Results 

Simple data filtering reduced the number of datasets (i.e., set-by-set data for 1994-2022) 

collected in the North Pacific Ocean from 1,887,951 to 119,177.  
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Selection of the best model  

All models were reasonably converged with the positive definite of hessian matrix and a 

small value of maximum gradient (Table 1). The model (M-3) including spatial (station) and 

spatio-temporal variances (season and station, and year-season and station) as random effects 

was identified by BIC as the most parsimonious model (Table 1). The estimated CPUE 

changed substantially if random effect component of year and station was added to the simple 

model (M_4, 5) (Fig. 1). Diagnostic plots of goodness-of-fit for the best model didn’t show 

serious deviations from normality and model misspecification (Fig. 2). These results 

suggested that the fitting of the best model to the data was good. Lists of all parameters and 

estimates of the best models are shown in Table 2.  

 

Temporal trends in CPUE 

The estimated annual changes in the CPUE of shortfin mako revealed a continuous upward 

trend from 1994 to 2014, and then gradually downward trend until 2020. Thereafter the 

CPUE slightly increased in recent years (Fig. 3). The 95% confidence intervals of the CPUEs 

were larger after 2011 (Fig. 3) due to the decline of fishing effort (Table 3; Fig. A1). The 

estimated seasonal changes in the CPUE of shortfin mako indicated the highest CPUE in Q4 

and followed by that in Q2, Q3 and Q1 (Fig. 4). Temporal (year-season) changes in the 

distribution shift, range expansion, and predicted CPUEs are shown in Appendix. 

 

Spatiotemporal trends in CPUE 

Overall, there were sort of spatiotemporal patters of predicted CPUEs of shortfin mako 

throughout the year-season spatial maps (Figs. 5-7). The higher CPUEs (hotspots) of shortfin 

mako were observed in the waters of coastal area of Japan (30-40°N, 140°-150°E) in Q2 and 

Q3 (e.g., Q2 in 1997, Q3 in 2001, Q2 and Q3 for 2010-2012, Q2 for 2014-2019 etc.) and 

offshore area of Japan (30-45°N, 140°-160°E) in Q3 and Q4 (e.g., Q3 in 2003, Q4 for 1999-

2001, Q4 after 2009 etc.) In addition, the higher CPUEs of shortfin mako were also observed 

in the water at the lower latitude (25-35°N, 140°-180°E) in Q1 (e.g., 1996-2003, 2013 and 

2014 etc.). The hotspots of shortfin mako were substantially changed by year (Fig. 8), while 

those were not largely changed by season (Fig. 9). The higher CPUEs were observed in the 

Kuroshio-Oyashio transition zone (TZ) (32-42°N, 160°E -160°W) for the whole seasons, 

while the lower CPUEs of shortfin mako were observed in the sub-tropical area (25-35°N, 

138°-170°E) except for winter in Q4 (Fig. 9). 
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Discussions 

This document paper estimated a historical trend in abundance indices of shortfin mako 

caught by Japanese shallow-set longline fishery in the western and central North Pacific 

Ocean from 1994 to 2022 using a spatio-temporal GLMM in considerations with seasonal 

and interannual variations of the density. The main advantage of the spatio-temporal model is 

an imputation for the missing data using spatial and temporal correlations through random 

effects (Thorson, 2019). Unlike the design based GLM used in the previous assessment (Kai, 

2017), the spatio-temporal GLMM developed by Thorson et al. (2020) enabled us to include 

interaction terms between spatial and temporal effects (season, year, and season-year effects) 

with high spatial resolutions. The spatio-temporal variations with high spatial resolution had 

a large impact on the seasonal trends in the estimated CPUE (i.e., the highest CPUE in Q4, 

see Fig 4) and that resulted in the substantial changes in the annual CPUEs (Fig. 3).  

 

The annual trends of the selected model (M-3) suggested that the abundance indices of 

shortfin mako continuously increased from 1994 to 2014 (Fig. 2). Thereafter the abundance 

indices decreased until 2020 and increased in recent years. In consideration with a low 

productivity of shortfin mako due to slow growth, late maturity, low fecundity, and low 

steepness (Semba et al. 2009, 2011; Kai, 2019), the annual abundance index of shortfin mako 

estimated in the previous analysis was unreasonable due to steep increasing trend from 1994 

to 2016 (Kai, 2017). However, this study indicated that spatiotemporal GLMM could slow 

down the steep increasing trend of this index for 1994-2016 (Fig. 3). Although, shortfin mako 

shark is known to be vulnerable to high pressure of fisheries because of a low productivity 

mentioned above, the population growth rates (r = 0.064; where r is the intrinsic growth rate 

of natural increase per year) are plausible because the latest study of the population growth 

rates of shortfin mako estimated from the two-stage sex model showed a similar or higher 

values (a mean value of r was 0.102 with a range of minimum and maximum values of 0.007-

0.318) (Yokoi et al. 2017).  

 

The year-season spatial maps showed that the hotspots of shortfin mako appeared in the 

vicinity of the coastal and offshore waters of Japan and the Kuroshio-Oyashio transition zone 

(TZ) (Figs. 5-7). These results supported the previous study (Kai et al., 2017a). These 

hotspots may be mainly formed by juvenile and subadults shortfin mako because shortfin 

mako is known to born during late autumn and winter off the coast of north-eastern Japan, an 

area known to have relatively high productivity compared with other pelagic areas, and 
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gradually expanded their habitat eastward and northward with the seasons as they grew (Kai 

et al. 2015).  

 

The hotspots of shortfin mako were substantially changed by year (Figs. 8), while those were 

not largely changed by season (Fig. 9). These results suggested that the year-season effects 

should be considered when the spatiotemporal distribution patterns of the shortfin mako are 

investigated. Kai et al. (2017a) indicated that shortfin mako distribution changes seasonally 

with clear north-south movement, which follows higher sea surface temperatures (SST). 

Suppose that the shortfin mako preferred to staying in the water of higher temperature, the 

hotspots must be seen in the southern water in spring (Q1). A length disaggregated 

spatiotemporal GLMM showed that most hotspots for “immature” shortfin mako occurred in 

the coastal waters of Japan, while hotspots for “subadult and adult” occurred in the offshore 

or coastal waters of Japan (Kai et al. 2017b). Although we understand that it is very difficult 

to collect enough length data in addition to the catch information for this type of analysis, 

such model can produce the age-specific annual CPUE as well as age-specific spatial-

temporal distribution maps. Further analyses considering the covariates of environmental 

effect and body size are needed to clarify the mechanism of seasonal changes in the 

spatiotemporal distribution of shortfin mako in future study.  
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Tables 

Table 1.  Summary of model structure and outputs among different models. All models 
include fixed effects. “Δ” denotes a difference between the value of criteria and the minimum 
value for AIC and BIC.    

 

 

Table 2. List of all parameters and estimates of the selected model.  

 

 

  

Model Catch rate predictors of random effect
Number of
parameters

Deviance ΔAIC ΔBIC
Maximum
gradient

M-1 Year-season and station 9 419370 388 135 < 0.0001

M-2 Year-season and station + Stat ion 10 419320 339 96 < 0.0001

M-3 Year-season and station + Stat ion + Season and station 14 419177 204 0 < 0.0001

M-4 Year-season and station + Stat ion + Year and stat ion 39 419076 154 192 < 0.0003

M-5 Year-season and station  +Station + Year and stat ion + Season and station 43 418914 0 77 < 0.003

No Parameter name Symbol Type Estimates

1 Distance of correlation  (Spatial random effect) κ Fixed 0.0036

2 Northings anisotropy h 1 Fixed 1.52

3 Anisotropic correlat ion h 2 Fixed 1.01

4 Parameter governing pointwise variance (Spatial random effect) η ɤ Fixed 0.84

5 Parameter governing pointwise variance (Spatio-temporal (season) random effect) η ω Fixed 0.43

6 Parameter governing pointwise variance (Spatio-temporal (year) random effect) η δ Fixed No estimation

7 Parameter governing pointwise variance (Spatio-temporal (year-season) random effect) η θ Fixed 0.35

8 Parameter governing autocorrelation (Spatio-temporal: year-season random effect) ρ θ Fixed 1.38

9 Residual variation 1 of negative binomial model σ 1 Fixed 1.47

10 Residual variation 2 of negative binomial model σ 2 Fixed 0.35

11 Intercept  for first  predictor β 1 Fixed 20.02

12 Intercept  for second predictor β 2 Fixed 0.0004

13 Intercept  of season main effect for season 2 relative to season 1 τ １ Fixed 1.15

14 Intercept  of season main effect for season 3 relative to season 1 τ ２ Fixed 1.09

15 Intercept  of season main effect for season 4 relative to season 1 τ ３ Fixed 1.41

16 Spatial residuals γ Random Not shown

17 Spatio-temporal (season) residuals ω Random Not shown

18 Spatio-temporal (year) residuals δ Random No estimation

19 Spatio-temporal (year-season) residuals θ Random Not shown
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Table 3. Summary of annual CPUE predicted by spatio-temporal model along with 
corresponding estimates of the coefficient of variation (CV), annual nominal CPUE, and 
number of hooks in millions. CPUEs are predicted using the best fitting model and scaled 
by the average CPUE.  

Year 
Predicted 
CPUE 

Nominal 
CPUE 

CV 
Number 
of hooks 
(millions) 

1994 0.41 0.16 0.25 20.5 

1995 0.51 0.22 0.23 18.1 
1996 0.65 0.31 0.20 19.3 
1997 0.63 0.43 0.19 18.0 
1998 0.65 0.45 0.17 18.2 
1999 0.66 0.53 0.17 20.1 
2000 0.65 0.62 0.16 23.3 
2001 0.73 0.54 0.15 22.9 
2002 0.66 0.52 0.16 20.4 
2003 0.75 0.63 0.13 18.0 
2004 0.81 0.67 0.14 18.3 
2005 0.96 0.89 0.12 16.6 
2006 1.00 0.90 0.13 16.1 
2007 1.06 0.96 0.12 18.2 
2008 0.91 0.85 0.14 15.8 
2009 1.21 1.13 0.12 14.4 
2010 1.14 1.03 0.13 13.8 
2011 1.30 1.34 0.15 7.5 
2012 1.40 1.36 0.15 9.2 
2013 1.16 0.95 0.16 9.5 
2014 1.56 1.39 0.15 9.8 
2015 1.52 1.65 0.15 8.1 
2016 1.42 2.16 0.16 7.8 
2017 1.40 1.73 0.17 7.3 
2018 1.39 1.82 0.19 7.6 
2019 1.24 1.71 0.18 7.2 
2020 0.98 1.05 0.18 7.6 
2021 1.10 1.07 0.18 5.7 
2022 1.15 1.95 0.18 3.9 
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Figures 

 

 

Fig. 1 Comparisons of annual predicted CPUE relative to its average among different model 

structures. For the details of the models, see table 1. The horizontal dotted line denotes 

mean of relative values (1.0). 
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Fig. 2 Diagnostic plots of goodness-of-fit for the most parsimonious model (M-3).  
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Fig. 3 Annual predicted CPUE relative to its average of the best model (M-3). Gray solid line 

denotes nominal CPUE relative to its average, shadow denotes 95% confidence intervals, 

blue dotted line denotes standardized CPUE provided in the previous assessment and 

horizontal dotted line denotes mean of relative values (1.0).  

 

 

Fig. 4 Seasonal predicted CPUE relative to its average. Gray solid line denotes nominal 

CPUE relative to its average, shadow denotes 95% confidence intervals, and horizontal 

dotted line denotes mean of relative values (1.0).  
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Fig. 5 Year- and season- specific spatial distribution of log-scaled predicted CPUE for 

shortfin mako from 1994 to 2003. Each point denotes the location of knot. 
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Fig. 6 Year- and season- specific spatial distribution of log-scaled predicted CPUE for 
shortfin mako from 2004 to 2013. Each point denotes the location of knot. 
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Fig. 7 Year- and season- specific spatial distribution of log-scaled predicted CPUE for 
shortfin mako from 2014 to 2022. Each point denotes the location of knot. 
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Fig. 8 Year specific spatial distribution of log-scaled predicted CPUE for shortfin mako from 
1994 to 2022. Each point denotes the location of knot. 

  



19 
 

 

Fig. 9 Season specific spatial distribution of log-scaled predicted CPUE for shortfin mako for 
three month four seasons. Each point denotes the location of knot. 
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Appendix 

Temporal (year-season) changes in the distribution shift, range expansion, and predicted 

CPUEs 

The temporal changes in the location in Eastings and Northings indicated periodic 

fluctuations (Fig. A1). The centroid of the population’s distribution shifted from southwest to 

northeast in Q1 and Q2 and vice-verse in Q3 and Q4. These results are synchronized with the 

movements of the Japanese shallow-set longliner who seasonally changes their operational 

areas in accordance with the target shift from swordfish to blue shark and vice versa (Hiraoka 

et al., 2016; Kai and Shiozaki, 2016; Kai 2021). For the eastings, the centroid of the 

population’s distribution clearly showed a substantial change in the locations toward the 

western water after tsunami attack on March 11th, 2011 (Fig. A1) because Japanese shallow-

set longliner changed their operational area from far-seas to the coastal and offshore areas off 

Japan in this period because of the disaster. Meanwhile, the temporal changes in the location 

in Northings (Fig. A1) indicated that the centroid of the population’s distribution gradually 

shifted from south to north in 1990s. These results suggested that the Japanese shallow-set 

longliner changed their main operational area from south to north in accordance with the 

target shift to blue sharks due to high demands of Asian market of shark’s meats and fins in 

1990s and 2000s.   

 The temporal changes in the effective area occupied showed periodic fluctuations 

(Fig. A2). Overall, the range expansion was remarkable in Q1, while the range contraction 

was remarkable in Q4. Notable, the large range contractions were observed in Q4 in 2006, 

2010, and 2016. However, the reasons for the sharp decline were unclear.   

 The temporal changes in the predicted CPUE indicated periodic fluctuations (Fig. A3). 

The highest CPUE was Q2. This result is reasonable because the Japanese shallow-set 

longliner changes their target species from swordfish to blue shark from Q1 to Q2.  
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Appendix figures 

 

Fig. A1 Year-season changes in the centroid of the population’s distribution (location in 
Eastings and Northings of each knot) for 1994-2022 with 95% confidence intervals (light 
blue shades). Upper panel denotes the movement of East-West and lower panel denotes the 
movement of North-South.  
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Fig. A2 Year-season changes in the effective area occupied for 1994-2022 with 95% 
confidence intervals (light blue shades).  

 

 

 

Fig. A3 Year-season changes in the predicted CPUE relative to its average. Gray solid line 
denotes nominal CPUE relative to its average, shadow denotes 95% confidence intervals, and 
horizontal dotted line denotes mean of relative values (1.0).  


