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Summary

This working paper details the approach used to construct an alternative CPUE hypothesis for the

late model period from three candidate indices (Hawaii longline index, Taiwanese longline index,

and Japanese research and training vessel index) using Dynamic Factor Analysis (DFA). Sensitivity

analyses to the construction of the DFA composite index, along with how the DFA composite index

is incorporated into the Stock Synthesis model are described. The effect of including the DFA

composite index in the Stock Synthesis model appeared to be sensitive to the choice of fishery

selectivity and the addition of extra variance for the index. DFA trends and Stock Synthesis

outputs appeared relatively robust to changes to the input CV for each of three input indices.

A baseline DFA composite index model was identified which assumed selectivity mirroring with

the Japanese Enyo Deep longline, added extra variance to ensure an average CV of 0.2 for the

index, and assumed the input CV for each index was the same as specified in the Stock Synthesis

model fitting to the Japanese Kinkai shallow late index. Comparisons between models fitting to

the baseline DFA composite index and the Japanese Kinkai shallow late index indicated marginally

better fits to common likelihood components for the DFA composite index model. However, it was

difficult to exclude either CPUE hypothesis based on model diagnostics alone. Both models showed

retrospective bias which was identified in the DFA composite index model to be caused by the large

observed sample size for the Taiwanese small scale longline length composition data in 2018 and

2020. Six additional sensitivities were run using the baseline DFA composite index model to explore

eliminating the retrospective pattern via down-weighting or removing the length composition data

in 2018 and 2020 for the Taiwanese small scale longline, and also investigate the effect of adding

extra variance to ensure an average CV of 0.4. Evaluation of the six sensitivity models fitting to

the baseline DFA composite index model did not identify a clear best model based on fits to the

data or model diagnostics. Given this, and the clear difference in population trajectory and scale

between the two alternative late CPUE hypotheses, a way forward would be to consider a model

ensemble where each alternative CPUE hypothesis is weighted equally.

1 Introduction

Blue shark, Prionace glauca, are a productive, wide-ranging pelagic shark, that are globally dis-

tributed in temperate and sub-tropical waters (Nakano and Stevens, 2008). Blue shark are active

in the epipelagic environment (<220m; Moyes et al., 2006; Heard et al., 2018; Fujinami et al., 2021)

and are often captured in longline fishing operations, either as a targeted (Kai, 2021a) or bycatch

species (Campana, 2016). Within the Pacific Ocean blue shark are considered to be comprised of

two stocks with the equator dividing northern and southern hemisphere populations (King et al.,

2015; Taguchi et al., 2015). Within the north Pacific Ocean, the International Scientific Committee

(ISC) routinely conducts stock assessments to evaluate the population status and impacts of fishing

activity on blue shark.

3



North Pacific Ocean blue shark was previously assessed in 2017 with the management advice based

on the results of a single Stock Synthesis (Methot and Wetzel, 2013) base-case model (ISC, 2017).

This base-case model was developed in an iterative process to produce a model consistent with

data assumed to be most representative of the stock. Fisheries-dependent indices were developed

to provide information on the population trend in two model periods (early ≤ 1993, and late ≥
1994) based on a change in species-specific data reporting in Japanese data. Only a single index

based on the Japanese shallow-set longline was available in the early period, multiple indices were

available for the late period. These included the Japanese shallow-set longline, Hawaii longline

observer index, Taiwanese longline observer index, Pacific Community Regional Observer Program

index, and the Mexican longline index. Fitting to these indices individually resulted in different

population trajectories in the recent period from those indicated by the Japanese shallow-set index.

This result was the topic of discussion at the Western and Central Pacific Fisheries Commission

(WCPFC) Scientific Committee (SC) meeting (WCPFC, 2017).

In addition to the four alternative late period indices used in the 2017 ISC blue shark stock as-

sessment, a fifth index was prepared from Japanese research and training vessel longline data for

the current assessment (Kai, 2021b). Three of these indices; the Hawaii longline, Taiwanese large-

scale longline, and Japanese research and training vessel; come from fisheries which predominantly

target tunas typically via deep setting operations (Ducharme-Barth and Vincent, 2020). Though

the Hawaii longline index is based on observer data which may more accurately reflect the rate of

blue shark encounter relative to logbook records (Ducharme-Barth et al., 2022), use of this index

was discounted in the previous assessment due to its reduced spatial extent. However, the Hawaii

longline index appears to show similar trends in blue shark to the Taiwanese longline and Japanese

research and training vessel indices, which have a much broader spatial extent (Kai, 2019; Liu et al.,

2021). The apparent consistency in trend across three fisheries could present an alternative CPUE

hypothesis from the Japanese shallow-set longline which seasonally targets blue shark.

Fitting to combined indices has seen increasing use in assessments conducted by tuna Regional

Fisheries Management Organizations (RFMOs) including the International Commission for the

Conservation of Atlantic Tunas (ICCAT) and the WCPFC (Ducharme-Barth et al., 2020; ICCAT,

2020, 2021), where the benefits include a reduction in data conflict between indices from individual

fleets with varying levels of spatial and temporal coverage. When data from all fisheries is made

available for analysis a priori ; a combined, joint index is typically constructed from a single,

unified standardization model (Hoyle et al., 2019; Ducharme-Barth and Vincent, 2020; Kitakado

et al., 2021). Post hoc analytic techniques including hierarchical Bayesian analysis (Conn, 2010)

and Dynamic Factor Analysis (Peterson et al., 2021) also exist for deriving a combined, composite

index form existing indices or survey data.

Dynamic Factor Analysis (DFA) is frequently used for extracting common temporal trends from

time series data (Zuur et al., 2003a). Additionally, DFA techniques can be applied to the oftentimes

short, noisy time series with missing observations that are frequently encountered in analyses of
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fisheries dependent data sets (Zuur et al., 2003b; Azevedo et al., 2008). Though DFA is generally

able to reconcile conflicting trends and reduce statistical noise, it can be sensitive to the input

variances associated with the conflicting trends (Peterson et al., 2021).

This working paper details the development of a composite index using DFA from the Hawaii

longline index, Taiwanese longline index, and Japanese research and training vessel index. This

paper also investigates key uncertainties with the composite DFA index: i) sensitivity to the input

CV for each candidate index, ii) sensitivity to the assumed selectivity for the new composite index,

and iii) sensitivity to the degree of extra variance added to the composite index. Lastly, we explore

the performance and fit of six composite DFA index candidate models using standard diagnostics:

residual analysis, age-structured production model (ASPM), retrospective analysis, and R0 profile

2 Methods

This working paper is divided into two sections. The first section (2.1) describes the DFA analysis

used to combine the Hawaii longline (2002-2020; Ducharme-Barth et al., 2022), (2004-2020; Tai-

wanese longline Liu et al., 2021), and Japanese research and training vessel indices (1994-2020; Kai,

2019, 2021b) into a single combined, composite index spanning 1994-2020. The second section (2.2)

describes how the composite index was incorporated into the existing Stock Synthesis (Methot and

Wetzel, 2013) model for blue shark (Kai et al., 2022c,b,a).

2.1 Dynamic factor analysis

The DFA approach taken in this working paper was implemented in R using the state-space mul-

tivariate autoregressive modelling package MARSS (Holmes et al., 2012, 2021a,b), and replicated

the methodology used by Peterson et al. (2021) to i) re-scale the indices for analysis and ii) fit the

DFA model described by the following equations:

yt = Γαt + ϵt where ϵt ∼ MVN(0,H) (1)

αt = αt−1 + ηt where ηt ∼ N(0, 1) (2)

where in the case of the current blue shark analysis yt is a vector of length j = 3 representing

the observations at time t for each index Ij , αt is the common trend across indices estimated

as a random walk with Normal error ηt, Γ is a 3 × 1 matrix containing the factor loadings for

each index, and H is the 3 × 3 covariance matrix for the observations where diagonal elements

were equal to the average CV for each index Ij and off-diagonal elements were assumed to be zero

(assuming independence across time series). In defining H, the average CV was defined as specified

in the Stock Synthesis model, including the additive variance adjustment factor, and rounded to

the second decimal place. This resulted in average input CVs for the DFA analysis of 0.4 for the

Hawaii longline index, 0.2 for the Taiwanese longline index, and 0.13 for the Japanese research and
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training vessel index (shown in Figure 1).

Traditional DFA analysis necessitates de-trending and standardizing the indices by their stan-

dard deviation (converting indices to a z-score) before log-transforming the index in order to meet

the DFA model assumptions of stationarity and a Normal error distribution. However, follow-

ing such a transformation, the derived DFA trend is unit-less with mean 0, and unable to be

back-transformed to the original units and scale. Peterson et al. (2021) developed an innovative

approach to re-scaling the indices in such a way that the assumptions of the DFA model are met,

and to allow for the recovery of the original scale and error structure of the index. An R code

tutorial for implementing DFA following the re-scaling approach used byPeterson et al. (2021) is

available at the author’s personal GitHub repository: https://github.com/cassidydpeterson/

DFA_Simulation_and_Assessment/blob/main/DFA_TUTORIAL.R. Briefly, the process is described

in the following 7 steps:

1. Multiply each index Ij by a constant cj .

2. Apply a log-transformation to each index.

3. Center and de-mean each index by subtracting and dividing each index by its respective mean.

4. Calculate a global standard deviation (GSD) across all indices.

5. Divide each index by the GSD.

6. Fit the DFA model described in equations 1 & 2.

7. The DFA trend αt and associated uncertainty were back-transformed and bias corrected

according to equations 3-5.

α̂t = exp
(
GSD × αt +

(GSD × SE2
t

2

))
(3)

SD(α̂t) = GSD × SD(αt) (4)

CV (α̂t) =
SD(α̂t)

α̂t
(5)

As mentioned previously, Peterson et al. (2021) developed an approach to ensure that the DFA trend

αt could be back-transformed such that the original scale was recoverable. This is accomplished in

step 1 of the previous process by multiplying each index Ij by a constant cj . The constant cj can

be any value such that the following constraints were satisfied:

1. The mean of log(Ij × cj) > 0.

2. GSD was small (GSD < 0.5).

3. The SD of each index following division by the GSD (previous step 5) was ∼= 1.

4. α̂t should follow changes in magnitude consistent with those of the survey inputs.
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Peterson et al. (2021) iteratively tuned the constants cj such that all four constraints were satisfied.

In the current analysis a genetic optimization technique was implemented in R using the rgenoud

package (Mebane and Sekhon, 2011) to solve for the set of cj that satisfied constraints 1 - 3.

Constraint 4 was satisfied via a post hoc assessment of the mean fit ratio across all surveys (ratioj =∑
t y

2
jt/

∑
t ϵ

2
jt), and a visual inspection of α̂t such that it showed a consistent trend to the input

indices.

2.2 Stock assessment modeling

Model settings (e.g. data.ss & control.ss) for the Stock Synthesis model incorporating the DFA

composite index were virtually identical to those described in Kai et al. (2022c,b,a). For that reason,

only changes to settings made to incorporate the DFA composite index and run sensitivity analyses

related to the DFA composite index model are described in this paper. Readers seeking greater

detail are directed to those working papers for a complete description of overall model settings.

2.2.1 data.ss file

The data file used for DFA composite index model runs were identical to the one described in (Kai

et al., 2022c) with the exception of the addition of a 31st fleet, the S11 DFA LATE survey. This

survey index spanned the years 1994 - 2020, assumed a lognormal error structure, and did not

include any additional length or size composition data.

A retrospective analysis of the baseline Stock Synthesis model (Kai et al., 2022a) indicated signif-

icant retrospective steps after the removal of the 2020 & 2018 data years, and this retrospective

pattern was also present for models fitting to the DFA composite index. This was identified to

be caused by abnormally large input sample size2 for Fleet 20 Taiwan small scale longline length

composition data in those years (2018 sample size = 20,416 and 2020 sample size = 21,571). Two

alternative data.ss files were prepared for sensitivity runs investigating the effect of those data on

assessment outcomes:

1. (drop) Removal of the length composition data for Fleet 20 in 2018 and 2020.

2. (ess) Rescale the input sample size for Fleet 20 in 2018 and 2020 to the average sample

size (sample size = 1,513) of the other years where length composition data was available

(2012-2017 and 2019).

2.2.2 control.ss file

The control file used for DFA composite index model runs was identical to the one described in

(Kai et al., 2022b) with the exception of the addition of and fitting to the S11 DFA LATE survey

described in Section 2.2.1. Fitting to this index required turning off the likelihood component

2∼ 13× larger than average input sample sizes for Fleet 20 in years 2012-2017 and 2019
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for S6 JPN LATE (setting survey likelihood λ = 0 for this fleet), and turning on the likelihood

component for S11 DFA LATE (setting survey likelihood λ = 1 for this fleet).

Inserting a new survey fleet also required the specification of an associated selectivity curve. Se-

lectivity was assumed to be length-based and sex-specific. Given that there was no composition

data associated with the new survey fleet, selectivity was mirrored from another representative

fleet. Two alternative control.ss files were prepared for sensitivity runs investigating the effect of

selectivity choice on assessment outcomes:

1. (Flt7 ) Selectivity was mirrored from F7 JPN ENY DP, Japanese Enyo deep longline. This is

the selectivity assumed for the Japanese research and training vessel survey index S7 JPN RTV.

2. (Flt17 ) Selectivity was mirrored from F17 US Lonline DP, Hawaii deep-set longline. This is

the selectivity assumed for the US Hawaii deep-set longline survey index S1 HW DP.

Selectivity for the Taiwanese large scale longline fleet (F19 TAIW LG & S3 TAIW LG) was as-

sumed to be time-varying. As such it can not be used to reliably index changes in population trend

and so was not considered as a representative selectivity for the S11 DFA LATE survey fleet (Kai

et al., 2022b).

2.2.3 Sensitivity analyses

Two sets of sensitivity analyses were conducted in the development of the alternate late-period

CPUE model. The first set of sensitivities consisted of 108 models relating to the construction

of the DFA composite index and identification of an appropriate baseline Stock Synthesis model

configuration for the DFA composite index. The 108 sensitivity models were a full-factorial combi-

nation of the following five model assumptions:

1. (S1 CV ) Choice of input CV for the DFA for the US Hawaii longline index: 0.43, 0.2 or 0.13.

2. (S3 CV ) Choice of input CV for the DFA for the Taiwanese large scale longline index: 0.4,

0.2 or 0.13.

3. (S7 CV ) Choice of input CV for the DFA for the Japanese research and training vessel

longline index: 0.4, 0.2 or 0.13.

4. (Selex mirror) Choice of assumed selectivity mirror for the DFA survey fleet in the Stock

Synthesis model: Flt7 or Flt17.

5. (Add extra variance) Choice of adding extra variance to the output DFA index such that it

had an average CV = 0.2 in the Stock Synthesis model: TRUE or FALSE.

Once an appropriate baseline Stock Synthesis model configuration for the DFA composite index

model was identified from the initial 108 model runs, a second set of sensitivities was conducted

to identify an optimal (or set of optimal) candidate model(s) to be considered as an alternate

3Bold values indicate the average CV as specified in the Stock Synthesis model.
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late-period CPUE model. An additional 6 model runs were considered based on the baseline DFA

composite index model, and were a full-factorial of the following two model assumptions:

1. (Add extra variance) Choice of adding extra variance to the output DFA index such that it

had an average CV in the Stock Synthesis model of: 0.2 or 0.4.

2. (Flt20 lf ) Choice of treatment of the Fleet 20 Taiwan small scale longline length composition

data: no treatment, drop, or ess.

2.2.4 Diagnostics

Models in the first 108 sensitivity runs were evaluated on the basis of convergence (e.g. maximum

gradient component < 1e − 04 and a positive definite Hessian solution), as well as with fits to

common likelihood components (e.g. fit to S5 JPN EARLY & total size composition likelihood).

Models in the second 6 sensitivity runs were evaluated based on standard stock assessment diagnos-

tics Carvalho et al. (2017, 2021): residual analysis (e.g. survey and length composition runs tests),

age-structured production model (e.g. ASPM ), retrospective analysis (3 year peel), R0 profile, and

model convergence (e.g. maximum gradient component < 1e− 04, and a positive definite Hessian

solution.

3 Results

3.1 DFA

The common trend αt estimated from the DFA models showed consistency with the input abun-

dance indices, and was fairly robust to assumptions on the input CVs for the three input abundance

indices (Figure 2). Overall the composite index showed a decline from 1994 to the mid-2000s before

increasing through the mid-2010s, with clear noise reduction in the index. The trend appears stable

over the last four years.

Focusing on the proposed candidate DFA index which assumed input CVs equal to those specified

in the original Stock Synthesis model (Kai et al., 2022b,a), the estimated factor loadings Γ were

0.368 for the Hawaii deep-set longline index, 0.216 for the Taiwanese large scale longline index and

0.418 for the Japanese research and training vessel index. Factor loadings sum to 1 and represent

the relative contribution of each input index to the common trend αt. In the current analysis

the Japanese research and training vessel index was the most influential, followed by the Hawaii

deep-set longline index, and Taiwanese large scale longline index. Factor loadings greater than |0.2|
are an indication that the common DFA trend αt is strongly coherent with that particular input

trend (Zuur et al., 2003b), which is the case in the current analysis. Furthermore, the proposed

candidate DFA index showed a good mean fit ratio (0.415) calculated across all indices. Peterson

et al. (2021) suggested that a mean fit ratio ≲ 0.4 is indicative of a very well fit model, a mean fit
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ratio ≲ 0.5 is indicative of a good fitting model, and a mean fit ratio ≳ 0.5 could be an indication

of a poorly fitted model.

3.2 Stock Synthesis

3.2.1 Sensitivity analyses

Results from the first set of sensitivity analyses indicated that the Stock Synthesis model outputs

were most sensitive to 1) the choice of fleet to use as a mirror for the S11 DFA LATE selectivity

curve (Figure 3) and 2) the decision to add extra variance to the DFA index when input into Stock

Synthesis (Figure 4). The Hawaii deep-set longline F17 US Lonline DP encounters slightly larger

individuals than the Japanese research and training vessels F7 JPN ENY DP (see Kai et al., 2022a

Figure 13), and shifting the selectivity to index the largest individuals could result in the lower

estimate of population scale and more depleted stock status. The back-transformed estimates of

uncertainty coming out of the DFA were small (CV ≃ 0.05) so adding an extra variance adjustment

factor to get the average CV = 0.2 pulled the model solution away from the S11 DFA LATE index

and towards the other likelihood components (e.g. Catch, Length composition, Size Frequency

data, and Recruitment). Noticeably, fit to the early index S5 JPN EARLY did not meaningfully

improve when the S11 DFA LATE was down-weighted indicating 1) that the model solution was

strongly informed by the fit to the S5 JPN EARLY index or that 2) the S11 DFA LATE was

not inconsistent with the S5 JPN EARLY index. As mentioned previously (Section 3.1), Stock

Synthesis model outputs indicated that the model was reasonably robust to the choice of input

CV for the three indices: Hawaii longline (S1 HW DP ; Figure 5), Taiwanese large scale longline

(S3 TW LG ; Figure 6), and the Japanese research and training vessels (S7 JPN RTV ; Figure 7).

Selection of the baseline DFA candidate model out of the 108 models evaluated was done on

the basis of convergence (maximum gradient <1e-04 and positive definite hessian solution) and

improved fit relative to an equivalent model fitting to the S6 JPN LATE index described in Kai

et al. (2022a). Improved fit was judged based on having a lower negative log-likelihood for key

likelihood components that were common between the two models: the S5 JPN EARLY index and

the length composition data. There were 27 models that met the selection criteria, all of which

assumed selectivity mirrored by the F7 JPN ENY DP and adding an extra variance adjustment

factor to the S11 DFA LATE index so that the mean CV = 0.2. The only difference between

models being the assumed input CVs for each index in the DFA. Estimated model trends were

very similar across the 27 models which met the criteria (Figure 8) and the model which preserved

the input CVs as assumed in Kai (2021a); Kai et al. (2022a) was selected as the baseline DFA

candidate model: 0.4 for the Hawaii longline index, 0.2 for the Taiwanese longline index, and 0.13

for the Japanese research and training vessel index.
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3.2.2 Candidate model diagnostics

3.2.2.1 Convergence All six candidate models fitting to the S11 DFA LATE index appeared

to converge with gradients < 1e−04 except for the model which dropped the 2018 & 2020 for Fleet

20 and had a variance adjustment factor for S11 DFA LATE resulting in an average CV of 0.2

(Table 1). This model also had several warnings indicating that one of the time-varying parameters

for F19 TAIW LG was close to a bound during minimization. However, an investigation into the

estimated time varying selectivity for F19 TAIW LG by sex (females Figure 9, and males Figure 10)

did not find anomalies with the estimated selectivities for this model relative to the other candidates

indicating that this warning could be benign.

3.2.2.2 Fit All six candidate models fitting to the S11 DFA LATE index exhibited better fits

(smaller negative log likelihood) to comparable length composition components (Table 2) than the

model fitting to the S6 index (Kai et al., 2022a). Within the six candidate models, fit to comparable

length composition components improved when models dropped or down-weighted the 2018 & 2020

length composition for Fleet 20. Additionally, two candidate models which did not modify the Fleet

20 length composition data showed a lower NLL for the S5 JPN EARLY than the model fitting to

the S6 index (Kai et al., 2022a). However, the model fitting to the S6 index (Kai et al., 2022a) had

a lower NLL for the catch, generalized size frequency and recruitment components of the likelihood.

Fit to the CPUE indices (S5 JPN EARLY & S11 DFA LATE ) was generally quite good (RMSE

values < 0.11 for all indices; Table 3). However, despite the small amount of residual error, runs

tests showed a non-random pattern in the residuals for the fit to the S11 DFA LATE index across

the board (Figures 11 - 16).

Runs testing of the mean length residual also showed a consistent pattern (Figures 17 - 22). All

models fitting to the S11 DFA LATE index showed non-random residual patterns for the same five

fisheries with non-random residual pattern in the S6 JPN LATE model (Kai et al. (2022a) Fig-

ure 2): F1 MEX, F3 CHINA, F4 JPN KK SH, F15 USA GILL, F18 USA Lonline SH. However,

models with larger down-weighting for the S11 DFA LATE index (variance adjustment = 0.4) also

showed a non-random residual pattern for F17 USA Lonline DP

3.2.2.3 ASPM All ASPM diagnostic models achieved a positive definite hessian solution and

converged to low gradients (the S11 drop 0.2 had the largest maximum gradient of 1.28e-04 ). Ad-

ditionally, visual inspection indicated the presence of a production function producing a consistent

trend and estimates of virgin biomass with the full model for four of the six candidate models

(Figure 23), the two outliers in terms of virgin biomass being S11 base 0.4 and S11 ess 0.2.

3.2.2.4 Retrospectives Most models showed some degree of retrospective bias for spawning

biomass (Figures 24-30) and fishing mortality (Figures 31-37), of comparable direction and magni-

tude to the S6 index model (Kai et al., 2022a), when quantities were not re-scaled to a mean of 1.
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The exception was the S11 drop 0.2 model which showed virtually no retrospective bias. In general

models which reduced the effect of the Fleet 20 data in years 2018 & 2020, either by removing or

down-weighting this data, indicated less retrospective bias.

3.2.2.5 R0 profile Likelihood profiles of R0 for total likelihood components (Figures 38-44)

were dominated by the recruitment component, and asymmetric with a greater support for a larger

range of log(R0). When broken out by fleet (Figures 45-51) there was a clear conflict between

the early and late CPUE indices. This conflict was smallest for the S11 drop 0.2 and S11 ess 0.2

models which minimized the effect of the Fleet 20 data without downweighting the S11 index.

The length composition data profiles for two major fleets (F4 JPN KK SH & F7 JPN ENY DP)

generally showed consistency with the total likelihood.

3.2.3 Candidate model results

All six S11 candidate models estimated lower estimates of population scale than the S6 index model

(Kai et al., 2022a), and also estimated a flatter or slightly declining trend over the last 20 years

of the model period (Figure 52). This reflects the pattern of estimated fishing mortality in the

six S11 models which do not continue to decline after the drift gillnet ban (Figure 53). Patterns

in recruitment are largely similar, all models predict a high spike in recruits in the late 1980s,

coinciding with the highest estimates of F. However, recruitment deviates for the six S11 candidate

models were more negative from the mid-1990s through the mid-2000s relative to the S6 index

model (Figure 54). Estimates of fisheries selectivity were fairly consistent across models though

the six S11 candidate models typically estimated slightly greater selectivity at larger sizes (Figures

9, 10, 55, & 56).

Within the six S11 candidate models, models that reduced the influence of the Fleet 20 Taiwan

small scale longline length composition data (down-weighting or removing) tended to estimate lower

population scale and a corresponding higher increase in fishing mortality. Selectivity estimates for

Fleet 20 did not noticeably differ across runs (Figures 55, & 56), indicating that changes in model

outputs are not likely related to differences among the Fleet 20 composition data between years.

Rather, by down-weighting (or removing) the Fleet 20 composition data it effectively up-weights the

other data components which may prefer lower estimates of population scale. Conversely, models

that added extra variance to the S11 index (mean CV = 0.4) down-weighted this index in the

likelihood and pulled estimates towards the S5 JPN EARLY which preferred larger estimates of

population scale.

4 Discussion

Dynamic Factor Analysis was able to produce a composite index that generally captured the

trend seen in the three candidate indices (the Hawaii longline, Taiwanese large-scale longline, and

Japanese research and training vessel) and can serve as an alternative model hypothesis for the
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2020 ISC blue shark stock assessment. However, there are a number of ways that this approach

could be further explored. Though the composite index appeared to be relatively insensitive to

the choice of input CV, the output CVs were quite small and could be sensitive to the choice of

re-scaling constant cj Peterson et al. (2021). Future analyses should explore alternative choices for

cj (that also meet all 4 selection criteria) to evaluate if this has an impact on the output CV for

the composite index. Regardless of the choice of cj , this working paper evaluated the effects of

down-weighting the composite DFA index (adding extra variance adjustment such that the average

CV was 0.2 or 0.4) and found that down-weighting the composite DFA index tended to produce

larger estimates of population scale and more optimistic stock status. Lastly, though the three

candidate indices for the DFA were chosen a priori based on similarity of trends in the overlapping

period and similarity in fishing behavior, DFA could accommodate all indices in a single analysis

and this could be explored in the future. However, combining all indices into a single trend would

require careful thought for an appropriate selectivity curve in the Stock Synthesis model.

Stock Synthesis model outputs appeared sensitive to the choice of assumed selectivity curve for the

index. However, the F17 US Lonline DP was not subsequently considered as a viable candidate on

the basis of not improving model the fit to key likelihood components. This indicated that assuming

the F17 US Lonline DP selectivity could be introducing conflict between the existing data compo-

nents relative to the F7 JPN ENY DP selectivity pattern. Furthermore, the F17 US Lonline DP

selectivity curve was based on a smaller number of observations from a more restricted spatial area

which could mean that it may not be as representative of the indexed population.

5 Recommendations

Evaluation of the six S11 candidate models relative to the S6 index model (Kai et al., 2022a) did not

identify a clear best model based on fits to the data or model diagnostics. Even within the six S11

candidate models it was difficult to identify a single model that was superior across all diagnostic

categories. Given this, and the clear difference in population trajectory and scale between the two

alternative late CPUE hypotheses, a way forward would be to consider a model ensemble where each

alternative CPUE hypothesis is weighted equally. For the alternative late CPUE hypothesis two

models could be considered with equal weighting: S11 base 0.2 & S11 ess 0.2 in order to account

for the model configuration which alleviates retrospective bias without arbitrarily removing the

Taiwanese small scale longline length composition data for years 2018 & 2020 from the model.

This would result in a proposed ensemble of three models: 50% S6 base 0, 25% S11 base 0.2 &

25% S11 ess 0.2.
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6 Tables

Table 1: Model convergence metrics (positive definite hessian solution, maximum gradient compo-
nent, and number of warnings) for the model fitting to the S6 index (Kai et al., 2022a) and the 6
candidate DFA models fitting to the S11 index.

Late index Flt20 LF Extra var PDH mgc warnings

S6 base 0 TRUE 5.585E-05 0
S11 base 0.2 TRUE 7.909E-06 0
S11 base 0.4 TRUE 7.674E-05 0
S11 drop 0.2 TRUE 1.276E-04 4
S11 drop 0.4 TRUE 8.836E-05 0
S11 ess 0.2 TRUE 8.594E-05 0
S11 ess 0.4 TRUE 5.656E-05 0
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Table 2: Negative log-likelihood (NLL) for key components for the model fitting to the S6 index (Kai et al., 2022a) and the 6 candidate
DFA models fitting to the S11 index. The NLL components are: Catch, Total Length Composition, Common Length Composition
(excluding Flt 20), Size Frequency, Recruitment, S5 JPN EARLY, S6 JPN LATE, S11 DFA LATE.

Late index Flt20 LF Extra var Catch LF Common LF SizeFreq Recruitment S5 S6 S11

S6 base 0 0.0002 114.8570 110.2239 0.1058 -8.5890 -27.6532 -48.5806
S11 base 0.2 0.0008 114.2100 109.4018 0.1464 -7.6920 -27.7780 -42.7064
S11 base 0.4 0.0005 113.6940 108.9602 0.1293 -8.7313 -27.7229 -23.8244
S11 drop 0.2 0.0025 108.6270 103.7778 0.1685 -8.0460 -27.3072 -42.9086
S11 drop 0.4 0.0015 107.9140 103.1492 0.1548 -8.3612 -27.4696 -24.0697
S11 ess 0.2 0.0021 109.2850 104.4301 0.1657 -7.8268 -27.4783 -42.8557
S11 ess 0.4 0.0010 108.5870 103.8443 0.1444 -8.4864 -27.6079 -23.9373
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Table 3: Root-mean squared error (RMSE) for fitted indices for the model fitting to the S6 index
(Kai et al., 2022a) and the 6 candidate DFA models fitting to the S11 index. The fitted indices
are: S5 JPN EARLY, S6 JPN LATE, S11 DFA LATE.

Late index Flt20 LF Extra var S5 S6 S11

S6 base 0 0.0773 0.0849
S11 base 0.2 0.0738 0.0473
S11 base 0.4 0.0754 0.1038
S11 drop 0.2 0.0869 0.0405
S11 drop 0.4 0.0826 0.0888
S11 ess 0.2 0.0824 0.0424
S11 ess 0.4 0.0787 0.0971
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7 Figures

Figure 1: Standardized CPUE indices for the Hawaii longline (blue; S1 HW DP), Taiwanese
large scale longline (yellow; S3 TW LG), and the Japanese research and training vessels (red;
S7 JPN RTV ). Uncertainty, denoted as ±1 SE including the additive variance adjustment factor,
is shown by the shaded polygon.
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Figure 2: Estimated DFA common trends (light gray lines) across all unique combinations of
input CVs. The associated uncertainty, ±1 SE including the additive variance adjustment factor,
is shown by the shaded gray polygons. The proposed candidate DFA index is shown in black.
The standardized CPUE indices for the Hawaii longline (blue; S1 HW DP), Taiwanese large scale
longline (yellow; S3 TW LG), and the Japanese research and training vessels (red; S7 JPN RTV )
are also shown.
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Figure 3: Violin plots showing the fit (Catch likelihood, Length composition likelihood, Size fre-
quency likelihood, Recruitment likelihood, S5 JPN EARLY likelihood and S11 DFA LATE like-
lihood) and estimated quantities (log(R0) and depletion) across all converged models (maximum
gradient <1e-04 and positive definite hessian solution) for different S11 DFA LATE selectivity as-
sumptions.
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Figure 4: Violin plots showing the fit (Catch likelihood, Length composition likelihood, Size fre-
quency likelihood, Recruitment likelihood, S5 JPN EARLY likelihood and S11 DFA LATE like-
lihood) and estimated quantities (log(R0) and depletion) across all converged models (maximum
gradient <1e-04 and positive definite hessian solution) for models with and without added variance
adjustment for S11 DFA LATE.
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Figure 5: Violin plots showing the fit (Catch likelihood, Length composition likelihood, Size fre-
quency likelihood, Recruitment likelihood, S5 JPN EARLY likelihood and S11 DFA LATE like-
lihood) and estimated quantities (log(R0) and depletion) across all converged models (maximum
gradient <1e-04 and positive definite hessian solution) for different levels of input CV assumed for
S1 HW DP in the DFA.
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Figure 6: Violin plots showing the fit (Catch likelihood, Length composition likelihood, Size fre-
quency likelihood, Recruitment likelihood, S5 JPN EARLY likelihood and S11 DFA LATE like-
lihood) and estimated quantities (log(R0) and depletion) across all converged models (maximum
gradient <1e-04 and positive definite hessian solution) for different levels of input CV assumed for
S3 TW LG in the DFA.
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Figure 7: Violin plots showing the fit (Catch likelihood, Length composition likelihood, Size fre-
quency likelihood, Recruitment likelihood, S5 JPN EARLY likelihood and S11 DFA LATE like-
lihood) and estimated quantities (log(R0) and depletion) across all converged models (maximum
gradient <1e-04 and positive definite hessian solution) for different levels of input CV assumed for
S7 JPN RTV in the DFA.
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Figure 8: Time series of total biomass (left panel), spawning biomass (center panel), and recruitment
(right panel) shown for all converged models considered in the first sensitivity (gray lines). Models
which met the selection criteria are colored with respect to their fit to the S5 JPN EARLY index.
The baseline DFA candidate model is shown by the green dots.
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Figure 9: Time-varying selectivity for sex 1 (females) for the F19 TAIW LG by candidate model.
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Figure 10: Time-varying selectivity for sex 2 (males) for the F19 TAIW LG by candidate model.
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Figure 11: Model name: S11 base 0.2: CPUE residuals runs test for the two main indices
S5 JPN EARLY and S11 DFA LATE. Red points indicate outliers based on 3 standard devia-
tions. The colored polygon indicates a passing (green) or failing (red) score for the residual runs
test.
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Figure 12: Model name: S11 base 0.4: CPUE residuals runs test for the two main indices
S5 JPN EARLY and S11 DFA LATE. Red points indicate outliers based on 3 standard devia-
tions. The colored polygon indicates a passing (green) or failing (red) score for the residual runs
test.
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Figure 13: Model name: S11 drop 0.2: CPUE residuals runs test for the two main indices
S5 JPN EARLY and S11 DFA LATE. Red points indicate outliers based on 3 standard devia-
tions. The colored polygon indicates a passing (green) or failing (red) score for the residual runs
test.
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Figure 14: Model name: S11 drop 0.4: CPUE residuals runs test for the two main indices
S5 JPN EARLY and S11 DFA LATE. Red points indicate outliers based on 3 standard devia-
tions. The colored polygon indicates a passing (green) or failing (red) score for the residual runs
test.
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Figure 15: Model name: S11 ess 0.2: CPUE residuals runs test for the two main indices
S5 JPN EARLY and S11 DFA LATE. Red points indicate outliers based on 3 standard devia-
tions. The colored polygon indicates a passing (green) or failing (red) score for the residual runs
test.
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Figure 16: Model name: S11 ess 0.4: CPUE residuals runs test for the two main indices
S5 JPN EARLY and S11 DFA LATE. Red points indicate outliers based on 3 standard devia-
tions. The colored polygon indicates a passing (green) or failing (red) score for the residual runs
test.
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Figure 17: Model name: S11 base 0.2: Mean length residuals runs test for the two main indices
S5 JPN EARLY and S11 DFA LATE. Red points indicate outliers based on 3 standard deviations.
The colored polygon indicates a passing (green) or failing (red) score for the residual runs test.

37



Figure 18: Model name: S11 base 0.4: Mean length residuals runs test for the two main indices
S5 JPN EARLY and S11 DFA LATE. Red points indicate outliers based on 3 standard deviations.
The colored polygon indicates a passing (green) or failing (red) score for the residual runs test.
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Figure 19: Model name: S11 drop 0.2: Mean length residuals runs test for the two main indices
S5 JPN EARLY and S11 DFA LATE. Red points indicate outliers based on 3 standard deviations.
The colored polygon indicates a passing (green) or failing (red) score for the residual runs test.
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Figure 20: Model name: S11 drop 0.4: Mean length residuals runs test for the two main indices
S5 JPN EARLY and S11 DFA LATE. Red points indicate outliers based on 3 standard deviations.
The colored polygon indicates a passing (green) or failing (red) score for the residual runs test.
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Figure 21: Model name: S11 ess 0.2: Mean length residuals runs test for the two main indices
S5 JPN EARLY and S11 DFA LATE. Red points indicate outliers based on 3 standard deviations.
The colored polygon indicates a passing (green) or failing (red) score for the residual runs test.
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Figure 22: Model name: S11 ess 0.4: Mean length residuals runs test for the two main indices
S5 JPN EARLY and S11 DFA LATE. Red points indicate outliers based on 3 standard deviations.
The colored polygon indicates a passing (green) or failing (red) score for the residual runs test.
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Figure 23: Summary plot of Age-structured production model (ASPM) diagnostic. Models are
coded by color and type, where dotted lines show the ASPM version of the full model (solid line).
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Figure 24: Model name: S6 base 0: Three year retrospective analysis of spawning biomass.
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Figure 25: Model name: S11 base 0.2: Three year retrospective analysis of spawning biomass.
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Figure 26: Model name: S11 base 0.4: Three year retrospective analysis of spawning biomass.

46



Figure 27: Model name: S11 drop 0.2: Three year retrospective analysis of spawning biomass.
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Figure 28: Model name: S11 drop 0.4: Three year retrospective analysis of spawning biomass.
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Figure 29: Model name: S11 ess 0.2: Three year retrospective analysis of spawning biomass.
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Figure 30: Model name: S11 ess 0.4: Three year retrospective analysis of spawning biomass.
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Figure 31: Model name: S6 base 0: Three year retrospective analysis of fishing mortality.
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Figure 32: Model name: S11 base 0.2: Three year retrospective analysis of fishing mortality.
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Figure 33: Model name: S11 base 0.4: Three year retrospective analysis of fishing mortality.

53



Figure 34: Model name: S11 drop 0.2: Three year retrospective analysis of fishing mortality.
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Figure 35: Model name: S11 drop 0.4: Three year retrospective analysis of fishing mortality.
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Figure 36: Model name: S11 ess 0.2: Three year retrospective analysis of fishing mortality.
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Figure 37: Model name: S11 ess 0.4: Three year retrospective analysis of fishing mortality.
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Figure 38: Model name: S6 base 0: R0 profile for three main likelihood components: recruitment,
index, and length composition.
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Figure 39: Model name: S11 base 0.2: R0 profile for three main likelihood components: recruit-
ment, index, and length composition.
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Figure 40: Model name: S11 base 0.4: R0 profile for three main likelihood components: recruit-
ment, index, and length composition.
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Figure 41: Model name: S11 drop 0.2: R0 profile for three main likelihood components: recruit-
ment, index, and length composition.
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Figure 42: Model name: S11 drop 0.4: R0 profile for three main likelihood components: recruit-
ment, index, and length composition.

62



Figure 43: Model name: S11 ess 0.2: R0 profile for three main likelihood components: recruitment,
index, and length composition.

63



Figure 44: Model name: S11 ess 0.4: R0 profile for three main likelihood components: recruitment,
index, and length composition.
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Figure 45: Model name: S6 base 0: R0 profile for two main likelihood components by fleet: survey
index and length composition.
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Figure 46: Model name: S11 base 0.2: R0 profile for two main likelihood components by fleet:
survey index and length composition.
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Figure 47: Model name: S11 base 0.4: R0 profile for two main likelihood components by fleet:
survey index and length composition.
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Figure 48: Model name: S11 drop 0.2: R0 profile for two main likelihood components by fleet:
survey index and length composition.
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Figure 49: Model name: S11 drop 0.4: R0 profile for two main likelihood components by fleet:
survey index and length composition.
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Figure 50: Model name: S11 ess 0.2: R0 profile for two main likelihood components by fleet: survey
index and length composition.
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Figure 51: Model name: S11 ess 0.4: R0 profile for two main likelihood components by fleet: survey
index and length composition.
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Figure 52: Spawning biomass (with uncertainty) for each of the six S11 candidate models with the
S6 model shown for comparison.
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Figure 53: Fishing mortality (with uncertainty) for each of the six S11 candidate models with the
S6 model shown for comparison.
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Figure 54: Recruitment deviates (with uncertainty) for each of the six S11 candidate models with
the S6 model shown for comparison.

74



Figure 55: Time-varying selectivity for sex 1 (females) for non-F19 TAIW LG fleets by candidate
model.
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Figure 56: Time-varying selectivity for sex 2 (males) for non-F19 TAIW LG fleets by candidate
model.
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