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Abstract

This working paper provides the yearly changegandardized CPUE of shortfin mako caught by Japanes
shallow-set longline fishery from 1975 and 1993he western and central North Pacific. Since Jag@ane
logbook data before 1994 have nol/little informatatout species of sharks, we estimated the catcitbeu

of shortfin mako using the catch ratio of shortfirako to sharks from 1994 to 1999. The nominal CPUE
was standardized using a spatio-temporal genedalinear mixed model (GLMM). The best model was
selected using AIC for several candidate modelscivhiave different random effects as explanatory
variables. The full model was selected and thedstatized CPUE showed a decreasing trend from 1976 t
1987 and then it gradually increased up to 1993.

Introduction

At the data preparatory meeting in December 20X7tHe stock assessment of shortfin malksuris
oxyrinchu3 in the North Pacific, shark working group (WG)Iaternational Scientific Committee for Tuna
and Tuna-like Species in the North Pacific Oce&tCjlhad determined to use the fishery data fron# 169
2016 (ISC 2017) due to the difficulty in the estiroa of the catch and CPUE for the time before 1604
to a lack of the species specific data on the Jsgmaitongline fishery that is the main fishery catghthe
shortfin mako by bycatch in the North Pacific. Hoeg if we can use the longer time series of the,da
could be useful to improve the accuracy and precisif the stock assessment because it coverslifieeir
span (i.e. 31 years old for female) and give usdtita contrasts before 1994 and after 1993. liestimate
the catch number of shortfin mako for the data kefbd94 with a fixed accuracy level, if the annual
differences are small for the catch ratio of shonhako to sharks by area and quarter for the @hadiet
longline data since 1994.

The objectives of this working paper are to esterthe catch number of shortfin mako caught by Jegmn
shallow-set longline fishery from 1975 and 1993he North Pacific and to provide the yearly chaniges
standardized CPUE of shortfin mako using a spatmopioral generalized linear mixed model (GLMM)
(Thorson et al. 2015a; Kai et al. 2017a, b). Thetispgemporal model may yield more precise, biatady
reasonable, and interpretable estimates of abueddram common methods such as GLM (generalized
linear model) (Shelton et al. 2014; Thorson eR@ll5a) by reducing sample selection bias anddilimthe
spatial gaps common in fishery-dependent data @Welt al. 2014; Carruthers et al. 2011; Thorsoal.et
2016).

Materials and Methods

Data source

We used set by set logbook data of Japanese offstmat distant water longline fishery from 1975 @93
and the data from 1994 to 2016.

Data filtering
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Only the shallow-set commercial data were usedhénanalysis. The shallow-set data could be detenin
because fishermen changed the depth of the gehatwe the target species, and the number of HBEdva
depending on the depth (Nakano et al. 1997). Wmekkfthe shallow-set fishery using a small numbder o
HBF (3 - 6). We also used the data in Tohoku anélikddimlo (and Toyama prefecture) areas (Eastern and
Northern parts of Japan) because fishermen inrdggsaend to report the shark’s catch well (Hiraekal.
2016). Finally, we used only set by set data tlaatehl00 % reporting rates for sharks that definethb
number of sets recorded with sharks divided bytttal number of sets for a trip (Nakano and Clarke,
2006).

Estimation of catch number

Since Japanese loghook data before 1994 havetleaifiiformation about species of sharks, we estuhat
the catch number of shortfin mako using the cattio of shortfin mako to sharks by area (areal3R0N;
area2: 30-50°N and 130-170°E; area3: 30-50°N afdEXA60°W) and quarter (quarterl: Jan.—Mar.;
guarter2: Apr.—Jun.; quarter3: Jul.—Sep.; quartéet.—Dec.) from 1994 to 1999 (Table 1). The ddtera
1999 were not used for this analysis to avoid tfiects of the operational change in 2000s due & th
changes in the targeting (Hiraoka et al. 2016)taedatios were not stable (Fig. Al). The estimafesatch
number are continuous values, so that a continommeel was used for the CPUE standardization.

Spatio-temporal model

We developed a model that accounts for both sehsmthinter-annual variability in the distributiarf
shark species in the western and central NorthiPaaiile accounting for differences in samplimgansity
between locations, seasons and years. We usedrachieal spatio-temporal model, so that we could
explicitly decompose variance into components r&gméng among-year and within-year variation. Wanth
used the model to predict density at unsampledtitota and times, to provide the best-estimate ef th
yearly changes in the CPUE. Spatio-temporal mouglbf CPUE data assumes that species density at
nearby locations should have similar density edtauring each time interval. The correlation lestw
statistical stations (latitude and longitude) icleéime interval (governed by fixed effects that astimated
from the data) was then used to estimate catck mata period (year and quarter) for all stationsluding
stations that do not have data in each period.\W&e tompared the predicted CPUE with nominal CRUE t
examine the impact of the standardization on theds in the abundance indices of shortfin makden t
North pacific.

Model description

The spatio-temporal model estimated the derssity; t, ) in each statiors (latitude and longitude with a
resolution of 2 x 2 degree square), year-qudrteignifying a three-month quarter, whdre 1 in signifies

guarter-1 1975 antd= 76 signifies quarter-4 1993), and quantg(signifying a three-month quarter, wheye
= 1 in signifies quarterl armgl= 4 in signifies quarter4). We modelled the tempuweaaiation at the scale of
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3-month intervals, given that the species showeshgtvariable distributions among seasons and years
Each station, year-quarter, and quarter had thsitgen

d(s,t,q) = exp(do(t,q) + y(s) + 6(s, 1) + w(s,q)), (1)
where d,(t,q) represents temporal variation (the intercept facheyear-quarter and quarterg), y(s)
represents spatial variation (the average densiggations relative to the average station), aéifs,t) and
w(s,q) represents spatio-temporal variation (additioraalation in density for statiosand year-quartet
and for stations and quarteiq, respectively, after accounting for purely spatiad temporal variation).
Spatial variationy (s) is modeled as a Gaussian random field (GRF), widdhces to a multivariate normal
distribution (MVN) when evaluated at a finite séstations (Thorson et al. 2015b):

Y~MVN(0, 07 - Rypatiar), (2)
where ¢, is the marginal standard deviation (SD) of spatiatiation y and Rgyqiq iS spatial
covariance for the random field and approximataedgua Matérn correlation function with smoothness-
1:

Ropatiat(5,5") = s+ (kIH(s — S K, CelH(s = 1) 3)

where $-s| is the Euclidian distance between two generatmnss ands, o,

the spatial random field" is the gamma function, ari¢l, is the modified Bessel function of second kind

(Lindgren et al. 2011). This covariance functioncakates the correlation betwegn at stationss ands

given their distancesfs| after linear transformatioid which accounts for geometric anisotropy (see

supplementary in Thorson et al. 2015a). The sptgiaporal variation,6(s, t), was modeled by combining

the GRF for spatial variation with first-order arggressive process for temporal variation at edeh s
vec(8)~MVN (0,95 - Ropatiat ® Rar1), (4)

where vec(0) is the vectorized value of matri@, g, is the marginal SD of spatio-temporal variatién

® is the Kronecker product whereAf is anm x n matrix andB is ap x q matrix, then the Kronecker

product A ® B is thempx nq block matrix:

is the marginal variances of

a11B a1nB
A®B= : o, (5)
aB - a,,B
and Rypq is the temporal component of variance in spatiopi@mal variation 0:
Rapa(t,t” ) = plt=t |, (6)

wherep is a parameter governing autocorrelation dr |is the difference in time among samples in
year-quartet. The other spatial-temporal variatiom(s,q) was modeled by the same method¥és t).

We estimated a separate SD for spatig) @and spatio-temporabg, and g,,) components, but estimated the
same decorrelation distanae for the processes, using the implicit assumptiat dynamics were defined
by a “characteristic scale” that defined decorrefatlistance for both. Following the parametermatirom
Lindgren et al. (2011), we estimated a magnitudarpatern for each spatial and spatio-temporal process,
and the corresponding marginal SD was then cakilas:
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o, = 1/,/4nn3, (7)

where other marginal SDs (i.eqg, and a,,) were calculated similarly (fromyg, and 1,,,).

Expected catch; is a function of density and fishing effoft (number of hooks)¢; = d(s;, t;, ;) f;, and
was then compared with the observed catch (in nishbdor thei-th observation, in statios, year-quarter
ti, and quarten. The compiled spatio-temporal data (by each statiod year-quarter) of shortfin mako
showed a lognormal distribution, so that we assuthat available catch dataarises from the lognormal
distribution:

Pr(C = ¢) = Lognormal(C;log(c), 5?) (8)

where Lognormalx; m,¢?) is the lognormal probability density function &wated atx, given log-meam
and log-standard deviatian o is the time-varying (i.e. year-quarter changedag}standard deviation for
catch rates.

Parameters representing temporal variatide), (spatial covariancex(and n,), and spatial-temporal
covariance fg,1,, pPg,and p,) were estimated as fixed effects while integrataagoss random effects
representing spatial (station) and spatio-tempd@sshtion and year-quarter, and station and quarter)
variations (Table Al). This integral was approxiethtusing the Laplace approximation, and the fixed
effects were estimated using gradient informatian peovided by Template Model Builder (TMB;
Kristensen, 2015), which is an R package (R CornT,016) for fitting statistical latent variableodels

to data. It was inspired by ADMB (Fournier et a012). The details of TMB are described on the websi
(see http://www.admb-project.org/developers/tmbteased 28 Mar. 2018). Further details regarding GR
estimation can be found in Thorson et al. (201%a, b

After estimating the fixed effects (year and quaréexd parameters for the random effects) by mainyi
the marginal likelihood of the data, the relativentls of CPUE were predicted from the fixed andioam
effects. Coefficient of variatiorQV) for estimated CPUE was estimated using TMB.

Model convergence was confirmed using the hessenxr(confirming that the hessian is positive di&)
and by ensuring that the maximum absolute valubefinal gradient of parameters was less than. 0.6&
changes in predicted catch rates were compared gamaritiple models (Fig. 1). We used Akaike
Information Criterion (AIC; Akaike, 1973) to idefitiwhich model had greater support given availatdta
(Table 2). This model-selection is appropriate gitieat TMB implements maximum marginal likelihood
estimation.

We chose the best model with regards to the cortibirte of the explanatory variables for the four
candidate models. We also compared the yearly @saingpredicted catch rates among multiple modwls f
model selection. The CV and confidence intervalamiual changes in the CPUE were calculated for the
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best-fitting model using the information matrix agelta-method (Fournier et al. 2012). We also erauohi
the Pearson residuals for the best-fitting modeldentify model misspecification and heteroscedgsci
(Maunder and Punt 2004)

Results

The most complicated model (M-4) included purelatsd variation, spatio-temporal variation among
seasons, and spatio-temporal variation among albge AIC identified this saturated model as thestm
parsimonious model (Table 1) and the maximum grddias less than 0.01. Including the seasonal
component for spatio-temporal variation substalgtialecreased the marginal SD of spatial and
spatio-temporal variation among all periods (eapmpare the M-3 with M-4). We therefore used the
saturated model (M-4) to predict the yearly changeéke CPUE of shortfin mako.

Overall, the trend in predicted CPUE was almosilamamong four models, however, the differencéhef
random field (i.e. spatial-temporal random effedtall a large impact on the trends in predicted CPUE
(Table 1, Fig. 1). The standardized CPUE showecdce@easing trend from 1976 to 1987 and then it
gradually increased up to 1993, and the CV of ptedi CPUE ranged from 0.9 to 1.1 (Table 1, Fig. 2).

Diagnostic plots of goodness-of-fit to the data ttee most parsimonious model (Model 4) were shawn i
Fig. 3. The Pearson residuals indicated a sliglgatiee skewness, however the model fits at each
observation for the model were good.

Spatial distributions of predicted CPUE relativeittaverages were shown in Appendix figures (Fgs5).
These spatial distributions indicated that the patts of shortfin mako were distributed in the wabér
coastal and offshore nearby eastern part of Japan.

Discussion

This working paper provided the yearly changedandardized CPUE of shortfin mako caught by Japanes
shallow-set longline fishery from 1975 and 1993tle western and central North Pacific. There is no
problem to readily use the predicted CPUE for thelsassessment of shortfin mako, if the catch remolb
“shortfin mako” is recorded instead of the catcimber of “sharks”. However, there is a large undéetyan

the estimation of the catch number because we a&thncatch number of shortfin mako using the catch
ratio of shortfin mako to sharks for a differentdde. For that reason, it is questionable thaptkdicted
CPUE of shortfin mako in this study can represbkatactual trends in the abundance in the NorthfiPaci

Shortfin mako is a bycatch species and suscepbhbberexploitation due to slow growth rates, miaguat

a late age, and low fecundity (Compagno 2001). ddresiderable increase of the fishing effort in 19@ad
1980s was caused by the expansion of the shallowssgline fishery and the existence of the driftne
fisheries at high seas. These fisheries must hdagga impact on the abundance of shortfin makas€h
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facts can explain the decline of the abundancei04 and 1980s and an increase of the abundarbe in
late of 1980s and the beginning of 1990s due tal#doeease in the fishing effort. As the result,tleads of
the predicted CPUE is likely to be reasonable. Hmwgit is better to use a large CV (e.g. 0.2) wttes
index is applied to the assessment model.

To examine the consistency of the spatial distidioubf shortfin mako between early period (1975399
and latter period (1994-1999), we compared theogaaims (a function describing the degree of spatial
dependence of a spatial random field or stochasticess) (Cressie 1993) for the data of two peridts
sample variogram for the early period showed arddgatial correlation up to around 0.01 km (Fig.) A6
whereas the sample variogram for the latter pestumlved a clear spatial correlation up to aroun@ @r@
(Fig. A7). These results suggested that there vegmaal correlation present for both data. In &0didj there
was a different spatial dependency in the residiealboth data. Therefore, the degree of spatipeddency
may be different between the data of early periudl latter period. However, it is difficult to judgehether
the estimated spatial distribution of early perigéhcorrect because the spatial distribution carctenged
by year and quarter. In future work, we need tdaepthe relationships between the spatial deperydand
the catch ratio of shortfin mako to sharks.
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Table 1. Catch rate of shortfin mako to sharksieaand quarter. The definitions of area and quarteas
follows: areal: 20-30°N; area2: 30—-50°N and 130<&7@rea3: 30-50°N and 170°E-160°W, quarterl:
Jan.—Mar.; quarter2: Apr.—Jun.; quarter3: Jul.—Sspmarter4: Oct.—Dec..

Area Q1 Q2 Q3 Q4

1 0.0217 0.0136 0.0096 0.0253
2 0.0177 0.0106 0.0096 0.0284
3 0.0223 0.0105 0.0058 0.0287

Table 2. Summary of the model selection informafrom four analyses, including the catch rate priedi
as random effect, the number of parameters, thiauwdes, the reduction in AIGAAIC) from the best-fitting
model, maximum gradient, marginal standard dewia¢®D) of spatial variation and spatio-temporal
variations.

Marginal SD Marginal SD

Marginal SD of spatio- of spatio-
Number of Maximum 9 P P

Model Catch rate predictors of random effect (RE) Deviance AAIC . of spatial temporal temporal
parameters gradient o
variation (year-quarter)(quarter)
variation variation
M-1  Null 152 36090 2491 <0.01
M-2  Station 156 34590 999 <0.01 0.489
M-3  Station + Year-quarter and station 158 33632 45 040. 0.217 0.493
M-4  Station + Quarter and station + Year-quarter aatich 160 33583 0 <0.01 0.195 0.469 0.178
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Table 3. Summary of yearly changes in CPUE predibtespatio-temporal model along with the
corresponding estimates of the coefficient of waa(CVs), and yearly changes in the nominal CRInH
fishing effort (number of hooks x 1millions). Thalues are predicted using the best fitting moddl an
scaled by average CPUE.

Year Predicted CV Nominal Effort

1975 1.06 0.11 1.31 12.0
1976 1.30 0.09 1.46 16.7
1977 1.21 0.09 1.35 21.5
1978 1.26 0.09 1.18 20.2
1979 1.15 0.10 1.29 21.0
1980 1.24 0.09 1.30 18.8
1981 0.93 0.10 1.06 19.0
1982 1.00 0.10 1.13 17.3
1983 1.07 0.11 1.04 22.8
1984 0.98 0.10 0.89 23.7
1985 0.78 0.11 0.77 28.2
1986 0.94 0.11 0.92 29.8
1987 0.71 0.10 0.70 29.8
1988 0.82 0.11 0.74 24.2
1989 0.86 0.11 0.64 23.7
1990 0.82 0.11 0.63 20.6
1991 0.91 0.12 0.82 20.7
1992 0.90 0.12 0.80 21.9
1993 1.06 0.12 0.98 19.5
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Figure 1. Yearly changes in predicted CPUE relatsvaverage for shortfin mako for four models vitile
explanatory variables sequentially added to thematlel. Please see Table 2 for the model structure
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Appendix figure and tables

Table Al. List of all parameters and the estimédeshe best-fitting model.

No Parameter name Symbol Type Estimates

1 Distance of correlation (Spatial random effect) K Fixed 0.31

2 Northings anisotropy hy Fixed 0.51

3 Anisotropic correlation h, Fixed 0.29

4 Parameter governing pointwise variance (Spatiglaa effect) 7, Fixed 1.45

5 Parameter governing pointwise variance (Spatigdeah (year-quarter) random effect) 7, Fixed 0.60

6 Parameter governing pointwise variance (Spatig¢eah (quarter) random effect) No Fixed 1.59

7 Parameter governing autocorrelation (Spatio-teaip@ar-quarter random effect) pPo Fixed 0.38

8 Parameter governing autocorrelation (Spatio-teatppiarter random effect) o Fixed 0.10
9-84 Intercept for year-quarter do Fixed Not shown
85-160 Log-standard deviation for catch rates farymiarter o Fixed Not shown
161 Spatial residuals y Random Not shown
162 Spatio-temporal (year-quarter) residuals T Random Not shown
163 Spatio-temporal (quarter) residuals 0 Random Not shown

Working document submitted to the ISC Shark Work@wup Workshop, April, 10-16, 2017, La Jolla,
CA, USA.Document not to be cited without author’s permissia.



15

025
|

— - A204
--- A3Q1
- = AlQ2

Ratic of mako to sharks

005
A
4,’

\\s
pd
»

Vil

tly

A

\

b

Figure Al. Catch ratio of mako shark to sharks teaaand quarter from 1994 to 2016.
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Figure A2. Year-quarter specific spatial distrilbatiof predicted CPUE relative its average from 188
guarter 1 to 1993 and quarter 4.
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Figure A2. Continued.
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Figure A3. Year-specific spatial distribution ofpicted CPUE relative its average.
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Figure A4. Quarter-specific spatial distributionprédicted CPUE relative its average.
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Figure A5. Overall spatial distribution of predidt€PUE relative its average.
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Figure A6. Sample variogram of the Pearson resgdaltained by the null model for the data from 1894
1999.
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Figure A7. Sample variogram of the Pearson resgdaltained by the null model for the data from 18¥5
1993.

1Working document submitted to the ISC Shark Worki@mpup Workshop, April, 10-16, 2017, La Jolla,
CA, USA.Document not to be cited without author’s permissia.



