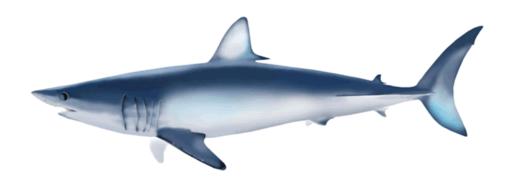


Catch and life history parameters of pelagic sharks in the Northwestern Pacific¹


Kwang-Ming Liu

National Taiwan Ocean University
Institute of Marine Affairs and Resource Management
Keelung 202, Taiwan

Wen-Pei Tsai

National Taiwan University Institute of Oceanography Taipei 106, Taiwan

Email: kmliu@mail.ntou.edu.tw

¹Working document submitted to the ISC Shark Working Group Workshop, 19-21 July 2011, Keelung, Chinese Taipei. Document not to be cited without author's permission.

Catch and life history parameters of pelagic sharks in the Northwest Pacific

Abstract - Annual landings (whole weight) of sharks at Nanfangao and Chengkung fish markets, eastern Taiwan fluctuated from 4,762 MT in 2001 to 4,794 MT in 2010 with a mean of 5,669 MT during this period. Blue shark was the dominant shark species and it consisted of 44.54% in weight of shark landing. The scalloped hammerhead and shortfin mako sharks were the other major species which comprised 9.87% and 9.42% in weight of shark landings, respectively. The life history parameters including age, growth and reproductive biology of 11 species of pelagic sharks in the Northwest Pacific were presented. Most age determinations were solely based on vertebral band counting only few were coupled with length-frequency analysis. Of these, 8 species are viviparous, and 3 species are ovoviviparous; the litter size ranges from 2 for pelagic and bigeye thresher shark to 30 for smooth hammerhead shark. The stock assessments of the pelagic thresher and shortfin mako suggested these stocks are overexploited.

²

¹Working document submitted to the ISC Shark Working Group Workshop, 18-20 March 2011, National Research Institute of Far Sea Seas Fisheries, Fisheries Research Agency, Shimizu, Japan. Document not to be cited without author's permission.

Introduction

Sharks are important components in Taiwanese offshore fisheries and are the major bycatch species of the far sea tuna longline fisheries. Despite of the large quantities of shark catch, the low economical value of shark meat makes it continue to be a bycatch species of other fisheries. A lack of detailed data on shark catch, effort, and fishing grounds for individual species in Northwest Pacific hinders the implementation of shark resources management.

The stock assessment of key shark species (blue, oceanic whitetip, short- and longfin mako, silky, and bigeye, common, and pelagic thresher sharks) in the north Pacific will be conducted in this working group. However, very little is known on the catch, life history parameters, and stock status of these species although they are the apex predators in the marine ecosystems. Thus, the objective of this study is to provide the catch and life history parameters information of pelagic sharks caught by Taiwanese offshore longline fishery in the northwest Pacific. It is hoped that these information can be used as input parameters for future stock assessment of these species.

Annual landings of pelagic sharks

There are two kinds of Taiwanese tuna fleets operating in the North Pacific Ocean: the large-scale tuna longline and the small-scale tuna longline vessels. Sharks are the major bycatch of these fleets. However, the bycatch data for Taiwanese tuna longline fleets has never been reported until 1981 because their low economic value compared with tunas. In addition, species-specific data for sharks are not available before 2003 because all shark catches were recorded as single species "sharks". Since 2003, the category of "sharks" on the logbook has been further separated into four sub-categories namely the blue shark, mako shark (*Isurus* spp.), silky shark, and other sharks.

The pelagic sharks caught in the Northwest Pacific Ocean by Taiwanese offshore longliners were landed at Nanfangao and Chengkung fish markets, eastern Taiwan. Annual landings (whole weight) of sharks at Nanfangao and Chengkung fish markets in eastern Taiwan fluctuated from 4,762 MT in 2001 to 4,794 MT in 2010 with a mean of 5,669 MT during this period (Fig.1).

³

¹Working document submitted to the ISC Shark Working Group Workshop, 18-20 March 2011, National Research Institute of Far Sea Seas Fisheries, Fisheries Research Agency, Shimizu, Japan. Document not to be cited without author's permission.

All shark species except blue shark were weighed before being auctioned and gutted, so we were able to obtain accurate catches (numbers) and individual whole weights (W) from sales records. The blue sharks were sold in different channel and other than total catch data were not available.

There are 11 species of pelagic sharks commonly caught by Taiwanese offshore longliners namely, shortfin mako (*Isurus oxyrinchus*), blue (*Prionace glauca*), pelagic thresher (*Alopias pelagicus*), bigeye thresher (*Alopias superciliosus*), silky (*Carcharhinus falciformis*), Oceanic whitetip (*Carcharhinus longimanus*), sandbar (*Carcharhinus plumbeus*), spinner (*Carcharhinus brevippina*), dusky (*Carcharhinus obscurus*), smooth hammerhead (*Sphyrna zygaena*), and scalloped hammerhead (*Sphyrna lewina*). Average percentage of shark landings by species at Nanfangao and Chengkung fish market was showed in Fig. 2. Blue shark was the dominant shark species andit consisted of 44.54% shark catch in weight. Followings are the scalloped hammerhead and shortfin mako and they comprised 9.87% and 9.42% of shark catch in weight, respectively.

The life history parameters of pelagic sharks

Age and growth and reproductive biology of 11 species in the Northwest Pacific have been examined. Chen et al. (1988, 1990) described age and growth, and reproduction biology of the scalloped hammerhead shark. Fishery biology including age and growth and reproductive biology of the bigeye thresher shark has been reported (Chen et al. 1997, Liu et al. 1998). Joung and Chen (1995), Chen et al. (1996), and Liu (2002) described the reproductive biology of the sandbar shark, and the smooth hammerhead, respectively. Fishery biology of the pelagic thresher shark, the spinner shark, and the silky shark have been described by Liu et al. (1999), Leu (1997), and Lee (2002), respectively.

⁴

¹Working document submitted to the ISC Shark Working Group Workshop, 18-20 March 2011, National Research Institute of Far Sea Seas Fisheries, Fisheries Research Agency, Shimizu, Japan. Document not to be cited without author's permission.

A summary of biological information including growth parameters and weight-length relationship for these species in Northwest Pacific was given in Tables 1 and 2. Eight of 11 species fall in viviparity including requrium sharks such as silky, sandbard, spinner, oceanic whitetip, dusky sharks, blue shark, smooth hammerhead, and scalloped hammerhead. Other sharks fall in ovoviviparity such as pelagic, bigeye threshers, and shortfin mako (Table 3).

Reproductive cycle is important information in stock assessment. Liu et al. (1999) documented that pelagic thresher from northeastern Taiwan breeds throughout the year. The requrium sharks show a distinct biennial cycle such as sandbar (Joung and Chen 1995), spinner (Joung et al. 2005), silky (Joung et al. 2008). A 3-year reproductive cycle was found for shortfin mako (Joung and Hsu 2005) (Table 3).

Stock assessment

Based on the sale records of Nanfangao and Chengkung fish markets, the percentage of shortfin make shark landings increased but the median weight of individuals decreased from 82 kg in 1990 to 70 kg in 2007. Chang and Liu (2009) applied per recruit and virtual population analysis on this species in the Northwest Pacific and concluded that this stock is overexploited. Similar situation was also found on the pelagic thresher in the Northwest Pacific by Liu et al. (2006) and Tsai et al. (2010). The above studies were solely based on Taiwanese data. More data on the catch, effort, and life history parameters of pelagic sharks in the North Pacific are needed to facilitate the stock assessment of these species.

⁵

¹Working document submitted to the ISC Shark Working Group Workshop, 18-20 March 2011, National Research Institute of Far Sea Seas Fisheries, Fisheries Research Agency, Shimizu, Japan. Document not to be cited without author's permission.

Reference

- Chang, J. H., and Liu, K. M. 2009. Stock assessment of the shortfin make shark (*Isurus oxyrinchus*) in the Northwest Pacific Ocean using per recruit and virtual population analyses. Fish. Res. 98: 92–101.
- Chen, C. T., T. C. Leu, and S. J. Joung. 1988. Notes on reproduction in the scalloped hammerhead, *Sphyrna lewini*, in northeastern Taiwan waters. Fish. Bull. 86: 389-393.
- Chen, C. T., T. C. Leu, S. J. Joung, and N. C. H. Lo. 1990. Age and growth of the scalloped hammerhead, *Sphyrna lewini*, in northeastern Taiwan waters. Pacific Sci. 44: 156-170.
- Chen, C. T., K. M. Liu, and Y. C. Chang. 1997. Reproductive biology of the bigeye thresher shark, *Alopias superciliosus* (Lowe, 1839) (Chondrichthyes: Alopiidae) in the northwestern Pacific. Ichthyol. Res. 44(3): 227-235.
- Chen, J. H. 2004. Fisheries biology of dusky shark, *Carcharhinus obscurus* in the northwestern Pacific Ocean. Unpublished MS Thesis, National Taiwan Ocean University, 120 pp. (In Chinese).
- Chow, Y. J. 2004. Age and growth of smooth hammerhead, *Sphyrna zygaena*, in the northeastern Taiwan waters. Unpublished MS Thesis, National Taiwan Ocean University, 66 pp. (In Chinese).
- Huang, J. C. 2006. Age and growth of blue shark, *Prionace glauca* in the northwestern Pacific. Unpubl. MS thesis, National Taiwan Ocean University. 76 pp. (In Chinese).
- Joung, S. J., and C. T. Chen. 1995. Reproduction in the sandbar shark, *Carcharhinus plumbeus*, in the waters off northeastern Taiwan. Copeia 1995:659-665.
- Joung, S. J., and H. H. Hsu. 2005. Reproduction and embryonic development of the shortfin mako, *Isurus oxyrinchus* Rafinesque, 1810, in the northwestern Pacific. Zool. Stud. 44(4): 337-346.
- Joung, S. J., Y. Y. Liao, K. M. Liu, C. T. Chen, and L. C. Leu. 2005. Age, growth, and reproduction of the spinner shark, *Carcharhinus brevipinna*, in the northeastern waters of Taiwan. Zool. Stud. 44(1): 102-110.
- Joung, S. J., C. T. Chen, H. H. Lee, and K. M. Liu. 2008. Age, growth, and reproduction of the silky sharks *Carcharhinus falciformis* in northeastern Taiwan waters. Fish. Res. 90: 78-85.
- Liu, K. M., P. J. Chiang, and C. T. Chen. 1998. Age and growth estimates of the bigeye thresher, *Alopias superciliosus*, in northwestern Taiwan waters. Fish. Bull. 96: 262-271.
- Liu, K. M., C. T. Chen, T. H. Liao and S. J. Joung. 1999. Age, growth and reproduction of the pelagic thresher shark, *Alopias pelagicus* in the northwestern Pacific. Copeia 1999(1): 68-74.
- Liu, K. M. and C. T. Chen. 1999. Demographic analysis of the scalloped hammerhead, *Sphyrna lewini* in the northwestern Pacific. Fish. Sci. 65(2):218-223.
- Liu, K. M., Y. T. Chang, I. H. Ni, and C. B. Jin. 2006. Spawning per recruit analysis of the pelagic thresher shark, *Alopias pelagicus*, in northeastern Taiwan waters. Fish. Res. 82:56-64.
- Liu, S. T. 2002. Reproductive biology of the smooth hammerhead, *Sphyrna zygaena*, in northeastern Taiwanese waters. Unpubl. MS thesis, National Taiwan Ocean University. 83 pp. (In Chinese)

⁶

¹Working document submitted to the ISC Shark Working Group Workshop, 18-20 March 2011, National Research Institute of Far Sea Seas Fisheries, Fisheries Research Agency, Shimizu, Japan. Document not to be cited without author's permission.

ISC/11/SHARKWG-7/

- Natanson, L.J., Kohler, N.E., Ardizzone, D., Cailliet, G.M., Wintner, S.P., Mollet, H.F., 2006. Validated age and growth estimates for the shortfin mako, *Isurus oxyrinchus*, in the North Atlantic Ocean. Environ. Biol. Fish. 77, 367-383.
- Tsai, W. P., K. M. Liu, and S. J. Joung. 2010. Demographic analysis of the pelagic thresher shark, *Alopias pelagicus*, in the Northwestern Pacific using a stochastic stage-based model. Mar. Freshwater Res. 61: 1056-1066.
- Wu, T. I. 2003. Reproductive biology of blue shark, *Prionace glauca* in the northwestern Pacific. Unpubl. MS thesis, National Taiwan Ocean University. 109 pp. (In Chinese).

⁷

Working document submitted to the ISC Shark Working Group Workshop, 18-20 March 2011, National Research Institute of Far Sea Seas Fisheries, Fisheries Research Agency, Shimizu, Japan. Document not to be cited without author's permission.

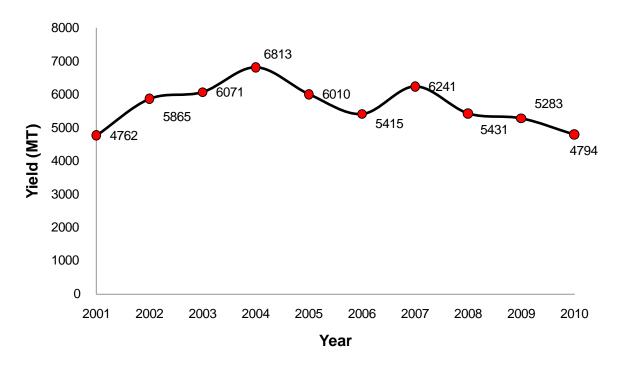


Fig. 1. Annual landing of sharks at Nanfangao and Chengkung fish markets from 2001 to 2010.

⁸ Working document submitted to the ISC Shark Working Group Workshop, 18-20 March 2011, National Research Institute of Far Sea Seas Fisheries, Fisheries Research Agency, Shimizu, Japan. Document not to be cited without author's permission.

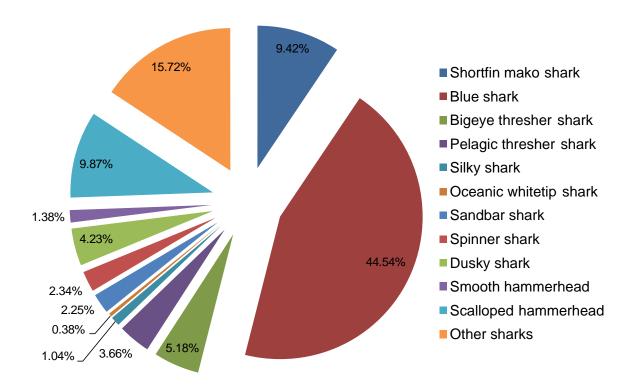


Fig. 2. Average percentage of shark landings by species at Nanfangao and Chengkung fish markets from 2001 to 2010.

9

Working document submitted to the ISC Shark Working Group Workshop, 18-20 March 2011, National Research Institute of Far Sea Seas Fisheries, Fisheries Research Agency, Shimizu, Japan. Document not to be cited without author's permission.

Table 1. Age and growth parameters of the pelagic sharks in the Northwest Pacific.

Scientific name	Common name	Sex	Sample size (n)	TL∞	k	$\mathbf{t_0}$	$\mathbf{L_0}$	Ref.	
Towns a south above	Shortfin mako shark	M	133	332.1	0.056	-6.08	-	Joung and Hsu, 2005; Chang, 2006	
Isurus oxyrinchus	Snortin mako snark	F	213	413.8	0.050	-	80		
Prionace glauca	Blue shark	М	M 181 375.8 0.121 -1.55 -		Huang, 2006				
	Diue shark	F	250	322.7	0.161	-1.32	-	iluang, 2000	
Alopias superciliosus	Bigeye thresher shark	M			Liu et al., 1998				
	Digeye unesner snark	F	214	422.0	0.092	-4.21	-	Liu et al., 1996	
Alopias pelagicus	Pelagic thresher shark	M	114	346.7	0.118	-5.48	-	Liu et al., 1999	
		F	155	382.9	0.085	-7.67	-	End et di., 1999	
Carcharhinus falciformis	Silky shark	M	132	314.5	0.097	-2.32	-	Joung et al., 2008	
		F	118	341.1	0.077	-3.03	-		
Carcharhinus longimanus	Oceanic whitetip shark	M	112	334.9	0.090	-1.36	-	Chen, 2006	
		F	112	323.8	0.109	-0.37	-	Chon, 2000	
Carcharhinus plumbeus	Sandbar shark	M	185	200.0	0.140	-4.00	-	Joung et al., 2004	
		F	176	223.0	0.100	-4.50	-		
Carcharhinus brevipinna	Spinner shark	M	104	257.4	0.203	-1.71	-	Joung et al., 2005	
		FF	102	288.2	0.151	-1.99	-		
Carcharhinus obscurus	Dusky shark	M	220	473.3	0.043	-4.45	-	Chen, 2004	
		F	167	414.6	0.055	-3.50	-		
Sphyrna zygaena	Smooth hammerhead	M	96	358.8	0.128	-0.72	-	Chou, 2004	
		F	70	375.2	0.111	-1.31	-		
Sphyrna lewini	Scalloped hammerhead	M	42	320.6	0.222	-0.75	-	Chen et al., 1990	
spnyma wmm	Scanoped nummerment	F	226	319.7	0.249	-0.41	-	Chen et al., 1990	

¹⁰

¹Working document submitted to the ISC Shark Working Group Workshop, 18-20 March 2011, National Research Institute of Far Sea Seas Fisheries, Fisheries Research Agency, Shimizu, Japan. Document not to be cited without author's permission.

ISC/11/SHARKWG-11/

Table 2. The parameters of weight-length relationships for the pelagic sharks in the Northwest Pacific.

Scientific name	Common name	Sex	Sample size (n)	a	b	Ref.	
Isurus oxyrinchus	Shortfin mako shark	M	807	2.8×10 ⁻⁵	2.771	Joung and Hsu, 2005; Chang,20	
	Shorum mako shark	F	1137	1.9×10 ⁻⁵	2.847	Joung and 11su, 2003 , Chang, 2000	
Prionace glauca	Blue shark	Combined	44	1.00×10 ⁻⁶	3.23	Wu, 2003	
Alopias superciliosus	Bigeye thresher shark	Combined	1905	9.80×10 ⁻⁶	2.686	Liu et al., 1998	
Alopias pelagicus	Pelagic thresher shark	M	865	2.66×10 ⁻⁴	2.493	T. 1 1000	
		F	1300	2.56×10 ⁻⁴	2.511	Liu et al., 1999	
Carcharhinus falciformis	Silky sharks	Combined	469	2.92×10 ⁻⁶	3.150	Joung et al., 2008	
Carcharhinus longimanus	Oceanic whitetip shark	Combined	188	1.66×10 ⁻⁵	2.819	Chen, 2006	
Carcharhinus plumbeus	Sandbar shark	Combined	400	1.89×10 ⁻⁶	3.230	Joung et al., 2004	
Carcharhinus brevipinna	Spinner Shark	М	111	3×10 ⁻⁶	3.144	1 4 1 2007	
		F	82	8×10 ⁻⁶	2.943	Joung et al., 2005	
Carcharhinus obscurus	Dusky shark	M	294	8.01×10 ⁻⁶	2.957	Chan 2004	
		F	209	2.03×10 ⁻⁶	3.216	Chen, 2004	
Sphyrna lewini	Scalloped hammerhead	Combined	2165	1.29×10 ⁻⁶	3.271	Chen et al. 1990	
Sphyrna zygaena	Smooth hammerhead	Combined	435	2.4×10 ⁻⁶	3.150	Chou, 2004	

¹¹

Working document submitted to the ISC Shark Working Group Workshop, 18-20 March 2011, National Research Institute of Far Sea Seas Fisheries, Fisheries Research Agency, Shimizu, Japan. Document not to be cited without author's permission.

Table 3. Reproductive parameters of the pelagic sharks in the Northwest Pacific.

Scientific name	Common name	R	L _b (cm)	$L_{m}\left(cm\right)$	T _m (yr)	f	$\begin{array}{c} G_p \\ (month) \end{array}$	R _c (yr)	Source of data
Alopias pelagicus	Pelagic thresher shark	ov	174.00	287.00	8.6	2.0	12.0	1	Liu et al.1999
Alopias superciliosus	Bigeye thresher shark	ov	148.70	336.58	12.85	2.0	12.0	1	Chen et al.1997
Carcharhinus brevipinna	Spinner shark	V	67.50	222.50	7.8	8.5	11.0	2	Joung et al. 2005
Carcharhinus falciformis	Silky shark	V	69.50	215.00	9.70	9.0	12.0	2	Joung et al. 2008
Carcharhinus longimanus	Oceanic whitetip shark	V	64.00	194.70	8.23	10.0	12.0	1	Chen 2006
Carcharhinus obscurus	Dusky shark	v	101.00	281.00	16.40	11.0	13.0	2	Chen 2004
Carcharhinus plumbeus	Sandbar shark	V	62.50	172.50	7.85	7.5	11.0	2	Joung & Chen 1995
Isurus oxyrinchus	Shortfin mako	ov	74.00	278.00	20.00	11.1	24.0	3	Joung & Hsu 2005; Chang 2006
Prionace glauca	Blue shark	v	45.00	189.00	4.20	29.0	10.0	2	Wu 2003
Sphyrna lewini	Scalloped hammerhead	V	48.50	230.00	4.70	25.8	10.0	2	Chen et al. 1988
Sphyrna zygaena	Smooth hammerhead	v	55.00	259.40	11.00	30.0	10.0	2	Liu 2002

R: reproduction type, L_b : size at birth, L_m : size at maturity, T_m : age at maturity, f: litter size, G_p : gestation period, R_c : reproduction cycle

Working document submitted to the ISC Shark Working Group Workshop, 18-20 March 2011, National Research Institute of Far Sea Seas Fisheries, Fisheries Research Agency, Shimizu, Japan. Document not to be cited without author's permission.