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Summary 

In this document, we attempted to develop recruitment abundance indices (i.e. standardized 

CPUE) of age-0 Pacific bluefin tuna using data of real-time troll monitoring operated in the East China 

Sea during the winter season for two periods of 2011-2020 and 2017-2020 fishing year. The 

standardized CPUE was calculated by Vector Autoregressive Spatio-Temporal (VAST) model which 

a delta-generalized linear mixed model that separately formulates the encounter probability and the 

positive catch rate. Those estimated indices for each time period in this study were generally similar 

to the index based on the traditional sales slip data, which was used for the 2020 assessment. 

Furthermore, our candidate models complement the data-poor 2017 fishing year, in which operations 

were restricted due to a strict fishing regulation, thus the indices would be reasonable for input into 

the stock assessment model for the next assessment. 

 

Introduction 

The recruitment abundance index (i.e. standardized CPUE) is one of the most important input 

data for the Pacific bluefin tuna (PBF) stock assessment. This recruitment index (age-0) has been 

calculated using the sales slip data of the Japanese troll fishery operating in the East China Sea (ECS) 

during the winter season. However, while the sales slip data has an advantage of being available for a 

long period of time, there are several concerns due to the nature of source such as the lack of zero-

catch data, rough spatial and temporal resolutions of samples (2 areas/date). In addition, Nishikawa et 

al. (2021) pointed out that recently introduced fishery management (catch allocation to each vessel 

(Individual Quota or Area based Quota)) has affected the number of operations, fishing season, 

operational purpose (for farming/market), and frequency of the live-release, while would not be 

captured by the sales slip data. Therefore, alternative information is necessary in order to correctly 

interpret the recent trends of recruitment.  

As an alternative data source, the Fisheries Resource Institute in Japan has been conducting real-

time troll monitoring survey since 2011 to collect catch and effort data with geographical information, 

which are transmitted to the institute in real-time through cellular networks (Tsukahara et al., 2019). 

Tsukahara et al. (2019) reported that those operational data with fine spatio-temporal resolution, which 

include live-release data and zero-catch operations, can be used to estimate standardized CPUE in a 

timely manner. Furthermore, the winter real-time monitoring survey maintains its consistency with 
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the sales slip CPUE in terms of the fishing season, fishing ground, and targeted age-0 PBF, which are 

born in two main spawning grounds (the North Western Pacific Ocean and the Sea of Japan). The 

performance of the estimated index using real-time monitoring data was reported as similar to 

traditional troll CPUE (Fukuda et al., 2021).  

As a result of the review of recruitment index at the last PBF WG meeting, the WG recommended 

not to use traditional sales slip recruitment index after 2016, when negative bias may occur due to 

operation changes in response to strict management measures. Some members recommended the 

recruitment index based on real-time monitoring information as an alternative, but the WG preferred 

to discuss further in the coming data preparatory and assessment meetings. 

The real-time troll monitoring data provides geographic information on operations by vessels, so 

allowing us to aggregate catch and effort into a detailed latitude-longitude grids. Applying to a spatio-

temporal statistical model to those data is expected to have advantages such as an area-based weighting 

of samples, an accountability for variability in sampling over space, and those might provide a more 

accurate estimation of standardized CPUE. Recently, an attempt has been made to apply the Vector 

Autoregressive Spatio-Temporal (VAST) model to PBF of Taiwanese longline fishery data and 

compare with abundance indices from traditional GLMM models (Yuan et al. 2021).  

In this study, we attempted to estimate recruitment indices for the entire data collection period 

from 2011 to 2020 and for the period of strict fishing regulations from 2017 to 2020, based on real-

time troll monitoring data instead of sales slip data, which has been strongly affected by recent fishing 

regulations. We explored area-weighted recruitment index using the VAST approach, which spatio-

temporal delta-generalized liner mixed modelling techniques (Thorson, 2019), with the hope of 

reducing bias due to decreased sampling area by fishing regulations. The results of those two periods 

(2011-2020 and 2017-2020 fishing year) are discussed and compared with indices calculated using 

the traditional results of the GLM (Nishikawa et al., 2021).  

 

Methods  

Data and data filtering 

        Data from 14 real-time troll monitoring vessels, which targeted for age-0 PBF (i.e. 40-60 cm fork 

length) during the winter season (November to following February) in the ECS were collected from 

2011 to 2020 fishing year. These vessels equip the GPS receiver and numeric keypad to input number 

of fish caught at the fishing location. The GPS data is recorded at intervals of 1 second while all trips. 

The vessel velocity can be estimated by the moving distance based on the GPS data. The estimated 
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velocity was smoothed by the trimmed mean to exclude the obvious outlier due to the unsettled GPS 

data. These trace of fishing behavior and catch position enable to use more precise efforts in an 

operation, i.e., substantial operation time, than the catch per day used for sales slip data. PBF operation 

was defined as continuous vessel’s velocity in the range of 2-7knot for more than 30 minutes. The PBF 

catch and effort (residence time in minutes) data were aggregated in a 0.1×0.1 degree 

latitude/longitude grids and formatted into the following data; vessel name, year, month, day, latitude, 

longitude, catch, effort.  

        For data filtering, the first step was to carefully review the aggregate data and use expert judges 

to remove any operations that were not clearly PBF operations based on the vessel's track and location 

records. This is because fishermen may operate targeting other fish species due to changes in the 

catchability of PBF and demand for farming depending on year and season. We also excluded two 

operations of data that had obvious errors in the numeric keypad entry on board (e.g., more than 500 

catches in one operation). A total of 254 grids and 2,840 days of operational data by 14 vessels were 

obtained (for location, see Fig. 1 top). Second, data in the northeastern part of Tsushima (latitude >34.5, 

longitude >129.2) was excluded (38 grids) because it was a unique fishing ground only for the 2011 

fishing year. This kind of data in rarely sampled area may affect the estimation of spatial effect of 

whole time series by the nature of VAST model for sharing information over space and time. Third, 

we filtered out the data in a grid where the amount of effort for each day and vessel was less than 5 

minutes in an operation. It was determined that those short amounts of effort were just transit time of 

simply passing the edge of the 0.1 degree grid rather than the real operation time spent in that grid. 

Finally, we also filtered out the data where the numeric keypad was not entered at the exact catch 

location, such as when the keypad was entered after returning to their port. As a result of the data 

filtering described above, 213 grids (16% filter) and 2,801 days (1% filter) of data throughout the 

whole period 2011-2020 were used for the VAST analysis, as the distribution of operation is shown in 

the bottom of Figure 1. 

As a summary of the data after filtering, a histogram of the fishing effort (in minutes) and the 

number of PBF caught for each data period is shown in Figure 2. In this 0.1 degree grids of aggregated 

data, the mean and standard deviation of fishing effort for 2011-2020 and 2017-2020 were 102.4 ± 

104.7 and 129.6 ± 125.5 minutes, respectively, both ranging from 5 to 735 minutes. Also, the mean 
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and standard deviation of PBF catch in each period were 2.9 ± 9.9 and 3.6 ± 12.9, respectively, with 

the same range of 0 to 265. Over the entire period (2011-2020), the operations of zero-catch rate was 

69%, the positive catch rate was 31%, and the coefficient of variation of PBF catch was 3.41. The 

nominal CPUE for each month and each fishing year is shown in Figure 3. 

 

Vector Autoregressive Spatio-Temporal (VAST) model 

VAST is a delta-generalized linear mixed model that separately formulates the encounter 

probability and the positive catch rate, and is available from the R package “VAST” version 3.8.2 on 

the website (https://github.com/James-Thorson-NOAA/VAST) (Thorson, 2019). In our study, the 

encounter probability (p) at observation i was modeled using a logit-linked linear predictor, and the 

positive catch rate (r) at observation i was modeled using a log-linked linear predictor, as in the 

following equation:  

(1)  logit(𝑝𝑖) = 𝛽1(𝑡𝑖) + 𝐿𝜔1𝜔1(𝑠𝑖) + 𝐿𝜀1𝜀1(𝑠𝑖, 𝑡𝑖) + 𝜁1
(𝑠𝑖 , 𝑚𝑖) + 𝐿𝜂1𝜂

1
(𝑣𝑖) 

(2)  log(𝑟𝑖) = 𝛽2(𝑡𝑖) + 𝐿𝜔2𝜔2(𝑠𝑖) + 𝐿𝜀2𝜀2(𝑠𝑖, 𝑡𝑖) + 𝜁2
(𝑠𝑖, 𝑚𝑖) + 𝐿𝜂2𝜂

2
(𝑣𝑖) 

where 𝛽(𝑡𝑖) is the intercept in year 𝑡𝑖, 𝜔(𝑠𝑖) is the time-invariant spatial variations at location 𝑠𝑖, 

𝜀(𝑠𝑖, 𝑡𝑖) is the time-varying spatio-temporal variations at location 𝑠𝑖 in year 𝑡𝑖, 𝜁(𝑠𝑖, 𝑚𝑖) is the 𝑠𝑖 

month effect 𝑚𝑖 as a catchability covariate which is either spatially varying at location at  𝑠𝑖 or 

spatially constant by configuration and 𝜂(𝑣𝑖)  is the effect of vessel 𝑣𝑖  as a factor of 

overdispersion, and 𝐿𝜔, 𝐿𝜀 and 𝐿𝜂 are the scaling coefficients of the random effect distributions. 

The probability of the density c is specified in this study as follows for a zero-inflated 

Poisson distribution: 

(3)  Pr(𝑐𝑖 = 𝑐) = {
1 − 𝑝𝑖                                                                                       if 𝑐 = 0

𝑝𝑖  × 𝑍𝑒𝑟𝑜𝐼𝑛𝑓𝑙𝑎𝑡𝑒𝑑 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑐𝑖|log (𝑟𝑖), 𝜎2)                  if 𝑐 > 0  
 

where  𝜎2 is a dispersion parameter.  

Then, the abundance index was predicted using an area-weighted approach, which calculates 

total abundance as a weighted sum of the estimated densities in a pre-defined spatial domain of 
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knots. The number of knots was set equal to the number of observation locations (213 knots for 

2011-2020 and 127 knots for 2017-2020). 

Regarding the configuration of spatial structure with Gaussian Random Markov field 

(GRMR), this analysis used the anisotropic estimation of correlation, which estimate two different 

parameters for the correlation of two independent directions. In terms of temporal configuration, 

there is no assumption of correlated structure both year effect itself and spatio-temporal variation 

because the recruitment strength was highly varying over year based on the PBF assessment result. 

 

Results and Discussion 

        In this study, area-weighted standardized CPUEs for two periods, 2011-2020 and 2017-2020, 

were estimated from spatio-temporal model analysis using real-time monitoring data (Fig. 7, left). For 

the 2011-2020 data period, the model (Case 1) that assumed spatial and spatio-temporal effects, month 

effect as catchability covariate which was spatially varying, and considered the vessel effect as an 

overdispersion factor for each of encounter probability and positive catch rate was judged to be the 

best model in terms of the AIC criteria (Table 1-1). On the other hand, for the 2017-2020 data, the 

model (Case 5) in which the month effect of encounter probability was adjusted to be spatially constant 

was determined to be the best (Table 1-2). The model converged successfully and the final gradients 

on each parameter were well below 1.36×10-7 for the 2011-2020 period (Table 2-1) and 1.06×10-7 for 

the recent period (Table 2-2). Quantile diagnostics of these models also showed no considerably 

negative signs in the standardization each data period (Fig. 8).  

        The result of distance of 10% correlation of both encounter probability and positive catch rate 

was estimated as anisotropic shapes with 45-60km of long axis mainly from south to north in each 

period of time (Fig. 5), so that the estimation in certain grids have some impacts on estimation in the 

approximately 3-4 grids away from there when 0.1 by 0.1 grid. This means spatial correlation seems 

to be limited for availability of age-0 PBF. Changes in the center of the PBF biomass in the east-west 

and north-south directions did not show a clear pattern with the estimated biomass (Fig. 6). For 

example, in the years when the estimated biomass was relatively high (Fig. 7, top left; 2013, 2016-

2018), there was no specific density distribution trend in the Tsushima and Goto (north-south) or in 
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the east-west areas (Fig. 4). This may mean that the variation in the center of biomass occurs regardless 

of the strength of the recruitment and is not characteristic for long-term interannual variability. 

        The comparison of the standardized indices by VAST (Case 1 for 2011-2020 and Case 5 for 2017-

2020) and traditional GLM index is shown in Figure 9. The indices estimated in this study were 

generally similar to the traditional ones throughout the period. As the results of operational changes 

responding to strict management measures, the recruitment index based on sales slip trend to 

negatively biased since 2016 (Nishikawa et al. 2021). Moderately high values in this real-time 

monitoring index after 2016 would likely reflect the difference of the data sources which include a 

live-release information only in a former one. In addition, the PBF of 2016 year class, which were 

caught as a notable peaks in various fishing gears/grounds, from size composition data, was confirmed 

as a relatively dominant year class (e.g., Tsukahara et al., 2021). Therefore, the index for 2016 

estimated from this study would be reasonable. The index has a relative large standard errors in 2017 

(Fig. 7), possibly due to limited data not only for seasonal coverage but also spatial coverage by fishing 

regulations (fishery ban in the latter half of 2017 fishing year). This means the estimation in 2017 

includes many expectations with spatial correlation structure but without data. Although the estimated 

value in 2017 is still point of contention as well as a traditional CPUE, the recruitment abundance 

indices in this study are considered reasonable and can be a candidate for the use in the stock analysis.  
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Table 1-1 For the period 2011-2020, combinations of explanatory variables for encounter probability 

(p) and positive catch (r) in a delta model and the values of Akaike information criterion (AIC). Delta 

AIC indicates the difference between the case 1 model with the lowest AIC. 

 

 

Table 1-2 Continuing with the dataset for the period 2017-2020. Delta AIC indicates the difference 

between the case 5 model with the lowest AIC. 

 

 

  

Case Model for p Model for r AIC ΔAIC

1 Yr + Station + Yr:Station + Month(spatially varying) + Vessel Yr + Station + Yr:Station + Month(spatially varying) + Vessel 42851 0

2 Yr + Station + Yr:Station + Month(spatially varying) Yr + Station + Yr:Station + Month(spatially varying) 43584 733

3 Yr + Station + Yr:Station + Month(spatially constant) Yr + Station + Yr:Station + Month(spatially varying) 43595 744

4 Yr + Station + Yr:Station + Month(spatially varying) Yr + Station + Yr:Station + Month(spatially constant) 45006 2155

5 Yr + Station + Yr:Station + Month(spatially constant) Yr + Station + Yr:Station + Month(spatially constant) 45040 2189

6 Yr + Yr:Station + Month(spatially varying) Yr + Station + Yr:Station + Month(spatially varying) 43674 823

7 Yr + Station + Month(spatially varying) Yr + Station + Yr:Station + Month(spatially varying) 43769 918

Case Model for p Model for r AIC ΔAIC

1 Yr + Station + Yr:Station + Month(spatially varying) + Vessel Yr + Station + Yr:Station + Month(spatially varying) + Vessel

2 Yr + Station + Yr:Station + Month(spatially varying) Yr + Station + Yr:Station + Month(spatially varying)

3 Yr + Station + Yr:Station + Month(spatially constant) + Vessel Yr + Station + Yr:Station + Month(spatially constant) + Vessel 17589 833

4 Yr + Station + Yr:Station + Month(spatially constant) Yr + Station + Yr:Station + Month(spatially constant) 17919 1163

5 Yr + Station + Yr:Station + Month(spatially constant) + Vessel Yr + Station + Yr:Station + Month(spatially varying) + Vessel 16756 0

6 Yr + Station + Yr:Station + Month(spatially constant) Yr + Station + Yr:Station + Month(spatially varying) 17136 380

7 Yr + Station + Yr:Station + Month(spatially varying) + Vessel Yr + Station + Yr:Station + Month(spatially constant) + Vessel 17528 772

8 Yr + Station + Yr:Station + Month(spatially varying) Yr + Station + Yr:Station + Month(spatially constant) 17859 1103
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Table 2-1 Initial and final condition of each parameter related to explanatory variables in the 2011-

2020 period. The list of parameters is as follows: 

beta; intercept for 1st or 2nd linear predictor (1st; encounter probability, 2nd; positive catch rate) each 

fishing year (2011-2020) 

L_eta; overdispersion factors (vessels) for 1st or 2nd linear predictor 

L_omega; spatial factors for 1st or 2nd linear predictor 

L_epsilon; spatio-temporal factors for 1st or 2nd linear predictor 

logkappa; decorrelation rate for 1st or 2nd linear predictor 

log_sigmaPh; conditional variance between each month for intercepts of 1st linear predictor  

  

 

Parameter Starting value
Lower

boundary

Maximum likelihood

estimation

Upper

boundary
Final gradient

ln_H_input -0.192 -5 -0.192 5 -5.47E-09

ln_H_input -0.076 -5 -0.076 5 -1.71E-09

beta1_ft_2011 -0.520 -Inf -0.520 Inf 8.52E-10

beta1_ft_2012 -0.903 -Inf -0.903 Inf 1.11E-09

beta1_ft_2013 -0.414 -Inf -0.414 Inf 2.04E-09

beta1_ft_2014 -1.011 -Inf -1.011 Inf 1.35E-09

beta1_ft_2015 -0.591 -Inf -0.591 Inf 8.87E-10

beta1_ft_2016 0.383 -Inf 0.383 Inf 6.75E-10

beta1_ft_2017 0.645 -Inf 0.645 Inf -8.25E-10

beta1_ft_2018 -0.340 -Inf -0.340 Inf 7.62E-10

beta1_ft_2019 -0.899 -Inf -0.898 Inf 5.30E-10

beta1_ft_2020 -0.600 -Inf -0.600 Inf -6.33E-11

L_eta1_z 0.824 -Inf 0.824 Inf -1.14E-07

L_omega1_z -1.014 -Inf -1.014 Inf 1.36E-07

L_epsilon1_z 0.744 -Inf 0.744 Inf -2.29E-08

logkappa1 -2.815 -4.790245 -2.815 -1.173742 1.31E-07

log_sigmaPhi1_k -0.832 -Inf -0.832 Inf -3.87E-09

log_sigmaPhi1_k -1.286 -Inf -1.287 Inf 1.72E-08

log_sigmaPhi1_k -0.127 -Inf -0.127 Inf -3.93E-09

beta2_ft_2011 -3.383 -Inf -3.383 Inf 1.22E-09

beta2_ft_2012 -3.413 -Inf -3.413 Inf -5.99E-09

beta2_ft_2013 -3.008 -Inf -3.008 Inf 1.77E-09

beta2_ft_2014 -4.217 -Inf -4.217 Inf 7.21E-09

beta2_ft_2015 -3.929 -Inf -3.929 Inf 4.95E-09

beta2_ft_2016 -3.037 -Inf -3.037 Inf -4.52E-09

beta2_ft_2017 -2.952 -Inf -2.952 Inf 1.94E-09

beta2_ft_2018 -2.890 -Inf -2.890 Inf -5.42E-09

beta2_ft_2019 -3.576 -Inf -3.576 Inf 1.10E-09

beta2_ft_2020 -3.450 -Inf -3.450 Inf 1.61E-09

L_eta2_z -0.235 -Inf -0.235 Inf -8.18E-10

L_omega2_z -0.125 -Inf -0.125 Inf 2.17E-09

L_epsilon2_z -0.836 -Inf -0.836 Inf 6.29E-08

logkappa2 -2.053 -4.790245 -2.053 -1.173742 1.45E-08

log_sigmaPhi2_k -0.329 -Inf -0.329 Inf 2.67E-10

log_sigmaPhi2_k -0.452 -Inf -0.452 Inf -4.08E-09

log_sigmaPhi2_k -0.548 -Inf -0.548 Inf -3.54E-09
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Table 2-2 Continuing with the dataset for the period 2017-2020. 

 

 

 

Parameter Starting value
Lower

boundary

Maximum likelihood

estimation

Upper

boundary
Final gradient

ln_H_input -0.264 -5 -0.264 5 -1.06E-07

ln_H_input -0.048 -5 -0.048 5 -4.14E-08

beta1_ft_2017 -0.051 -Inf -0.051 Inf -1.12E-09

beta1_ft_2018 -0.687 -Inf -0.687 Inf 1.86E-08

beta1_ft_2019 -1.513 -Inf -1.513 Inf 1.60E-09

beta1_ft_2020 -1.169 -Inf -1.169 Inf -5.40E-09

lambda1_k 0.194 -Inf 0.194 Inf -7.95E-09

lambda1_k 0.592 -Inf 0.592 Inf 2.81E-08

lambda1_k 0.954 -Inf 0.954 Inf -1.91E-08

L_eta1_z 1.058 -Inf 1.058 Inf -1.41E-08

L_omega1_z -1.019 -Inf -1.019 Inf 6.20E-08

L_epsilon1_z -0.841 -Inf -0.841 Inf 3.52E-08

logkappa1 -2.534 -4.733377 -2.534 -1.176148 -1.55E-08

beta2_ft_2017 -2.947 -Inf -2.947 Inf 1.33E-09

beta2_ft_2018 -2.694 -Inf -2.694 Inf 3.08E-10

beta2_ft_2019 -3.672 -Inf -3.672 Inf 5.42E-09

beta2_ft_2020 -3.564 -Inf -3.564 Inf 2.38E-09

L_eta2_z -0.349 -Inf -0.349 Inf 1.83E-08

L_omega2_z 0.000 -Inf 0.000 Inf -2.56E-09

L_epsilon2_z 1.021 -Inf 1.021 Inf -6.86E-08

logkappa2 -2.240 -4.733377 -2.240 -1.176148 1.18E-08

log_sigmaPhi2_k -0.358 -Inf -0.358 Inf -9.36E-09

log_sigmaPhi2_k 0.184 -Inf 0.184 Inf 2.79E-08

log_sigmaPhi2_k -0.222 -Inf -0.222 Inf -1.06E-08
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 Figure 1 Distribution of troll operations of 14 real-time monitoring vessels from 2011 to 2020 fishing 

year is shown in the raw data (top) and after filtering (bottom). The post-filtered data are used for 
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abundance estimation by the VAST model analysis. 

 

 

Figure 2 Frequency of fishing efforts (left) and PBF catches (right) for the two periods 2011-2020 

(top) and 2017-2020 (bottom) based on 0.1 degree grid aggregate data. 
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Figure 3 Nominal CPUE during 2011-2020 fishing year for each month (November to following 

February). No operations during the months of January and February of 2017 due to fishing regulations.  
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Figure 4 Spatio-temporal distribution of the log-transformed predicted densities of PBF for the 2011-

2020 (left) and 2017-2020 (right) fishing year analyzed by VAST model. Warmer and cooler colors 

indicate high and low values, respectively. 
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Figure 5 Decorrelation distance for different directions relative to encounter probability and positive 

catch rate for each of the two data periods 2011-2020 (left) and 2017-2020 (right). Indicating the 

magnitude of 2-dimensional spatial autocorrelation, and the ellipse signifies the distance (from a point 

located at position (0,0)), where the correlation drops to 10 %. The predicted densities correlated over 

a longer distance in the north-south direction than in the east-west direction. 
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Figure 6 The center of gravity of PBF recruitments indicating the sift in distribution (distance (km)) 

in the east-west (left) and north-south (right) directions for the periods 2011-2020 (top) and 2017-2020 

(bottom). The thick line with shading indicates the mean value and standard error.  
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Figure 7 Standardized index of relative abundance of PBF (left) and estimated of the effective area 

occupied by PBF indicating range expansion/contraction (right) for the periods 2011-2020 (top) and 

2017-2020 (bottom). The open circles with vertical lines denote point estimates with standard errors. 
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Figure 8 Diagnostic Q-Q plot (left) and residual plots (right) comparing the observed and predicted 

quantiles for the periods 2011-2020 (top) and 2017-2020 (bottom). The residual plot calculating a 

quantile regression to compare the empirical 0.5 quantile in y-direction (dashed red lines) with the 

theoretical 0.5 quantile (red solid line). 
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Figure 9 Recent trends of scaled abundance indices on results both traditional GLM (red line) using 

sales slip data (Nishikawa et al. 2021) and VAST analyses for the periods 2011-2020 (green line) and 

2017-2020 (blue line) using real-time monitoring data (this study). 

 


