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Introducti 

Abstract 

The concept and the value of steepness is one of the important parameters in the stock 

assessment, since steepness affects stock-recruitment dynamics and gives benchmark of 

fish stock management. In this document, we estimated the frequency distribution of 

steepness for Pacific Bluefin Tuna (PBF) by using the similar Monte Carlo simulation 

procedures used by Mangel et al. (2010). The estimated frequency distribution of steepness 

for PBF indicates that the stock recruitment relationship is sparse (i.e. high steepness value). 

The probability mass of the steepness values is concentrated from 0.997 to 0.999. This 

finding justified the working group’s decision to use 0.999 as of the steepness value at 

up-coming stock assessment with 0.8 and 1.0 for sensitivity analysis based on estimation in 

this document and Mangel’s result.  

 

Introduction 

 The spawner-recruitment relationship, i.e. relationship between spawning stock biomass 

(SSB) and recruitment (R), is an important issue in stock assessments, since recruitment is 

one of the important indices to evaluate stock status as well as a benchmark for fish 

management. One important parameter which describes the Stock Recruitment relationship 

is steepness (see definition in the next section). In the stock assessment meeting in 

February, 2012, Iwata et al. (2012) estimated the steepness of Pacific Bluefin Tuna (PBF) 

by using the deterministic version of the method of Mangel et al. (2010),obtaining a point 

estimate of steepness value. In this document, the frequency distribution of steepness for 

PBF was estimated by using the similar calculation rules used by Mangel et al (2010).  

 

Materials and methods 

 Concept of steepness 

The definition of steepness, as the fraction of recruitment from an unfished population (  ) 

to the recruitment level when the spawning stock biomass is reduced to 20% of its unfished 

level (  ), is firstly proposed by Goodyear (1977, 1980). After that, Mace and Doonan (1988) 

assumed that reproduction follows a type of Beverton-Holt stock recruitment relationship so 

that when spawning biomass is  , the resulting recruitment      is, 

     
 

    
 

where   and   are parameters. Let us denotes steepness as  , then following 

relationships are satisfied; 
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where    represents biomass without fishing and let us define         as   .   and   

are determined by the followings; 
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In general, a relatively high value of steepness means that the stock recruitment 

relationship is sparse (low); stock recruitment curve being close to parallel to the X-axis.  

 

 Model to derive steepness 

In this document, the steepness of PBF is calculated deterministically by modified methods 

of Mangel et al., (2010) together with other biological information. Firstly,   denotes the 

fraction of female at birth.   denotes the rate of natural mortality and    denotes the units 

of new biomass per existing spawning (female) biomass per time period. The steepness can 

be estimated by non-age-structured model as follows: 

   
       

 

  
       

 

,                     (1) 

The equation (1) without sex ratio, was derived from Myears et al. (1999). This particular 

form is proposed by Mangel et al. (2010). Steepness of age structured model is as follows; 
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,                   (2) 

  ̅    is the average biomass of a spawning female and    denotes the expected number 

of new individuals per unit spawning biomass. Let us consider,   ,   , and  ̅   . In the 

equations (1) and (2), relationship among these parameters, i.e.        ̅   , is satisfied 

implicitly. Therefore, once    is calculated, remainders are trivial. 

 

Details of calculation 

Using Mangel et al. (2010), let us consider two periods; early life period and grown-up 

periods. Various biological characteristics and parameters, in particular natural mortality, 

seem to be quite different in PBF between these two periods. Fish in the second period, 

grown-up period, follows most of the biological parameters estimated to the adult fish. 

However fish in the early life period are considered to have very distinct parameters. This 

period (early life period) represents time duration, in days, i.e.    days after hatch:    is 

defined by Mangel by using von Bertalanffy parameter (theoretical age at which size is 

zero:  ) as,        . Second period (adult period) is after    days. To find   , let us 

assume a female fish of age a, with mass during adult period W(a) (W(0) means the weight at 



 

 

start of adult period), length during adult period L(a), probability of being mature 

               FB(w) is defined as batch fecundity of this individual in a single spawning event 

and sf represents spawning frequency. Each egg is expected to contribute             to 

new biomass. Then    can be derived as follows; 

    
                    

    
                 (3) 

      is interpreted as  ̅    (Mangel et al., 2010). 

Next let us see the details of dynamics during early life period and adult. We calculate the 

temporal changes of survival rate by using dry weight of egg – natural mortality relationship 

(McGurk, 1986). Let us define wet mass       of a larva at an age (in days) and assume 

exponential growth during early life period, 

                     , 

where    is determined by       (          )   , since it is defined as the individual 

growth from initial weight of early life period       to initial weight of adult period      

during   days of early life period. 

To compute an expected mass that an egg contributes to future biomass, the survival of 

individuals during early life period has to be decided, before being entered to the population 

dynamics model. The conversion factor from dry weight, wdry, to wet weight is  

wl = 4.76 × wdry (Kamler,1994). 

          is defined as a daily mortality rate of an individual of dry mass wdry. McGurk (1986, 

Equation 7) concluded empirically that if          denotes a daily mortality rate of an 

individual of dry mass wd. If wdry is less than 0.00504(g), then  

  (    )               
      

or by McGurk (1986, Equation 2),  

   (    )                
     . 

Assuming survival at day     with probability Sl (d) (with Sl (0) = 1); natural mortality at 

age a,       (with        ) and accumulated mortality are  

             ∑                
 
    ,       ∑   (           )

 
   . (4) 

In the adult period, the weight and fork length relationship is considered as follows;  

                                 (Mangel et al., 2010) 

        {           }. 

Individuals grow up following the above equation until they reach maximum age (    ).  

Finally, relationship between batch fecundity (FB; million eggs) and fresh gonad mass 

(MG;g) is 

                            (Chen et al. 2006).  

The probability that a fish is mature at age a is,  
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where a50 is the age at which 50% of a cohort is mature (see Table 1). Usually, a slope is 

needed in the description of      . However whether or not the steepness value critically 

changes is depend on the value of slope. So we set the value of slope as 1. The age of 50% 

maturity,     is considered to be 5 years old in this study, since estimated length-at-50% 

maturity roughly corresponds to age 5 (Anon. 2008). 

In this document, based on equation (3) and (4), we calculate an approximate value,  ̃ , as 

follows, 

 ̃  
∑                             

∑      
. 

On the other hand, an approximate value,  ̃ can be derived from the following formulation, 

 ̃   ̃   ̅   . So, the definition of  ̅    is introduced as,  

 ̅    
(∑                 
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where                are weights of female at age a and the survival probability at age a. 

 Simulation procedures  

To estimate the frequency distribution of steepness values, Monte Carlo simulation was 

applied. In the simulation, we estimate frequency distribution of steepness for 200 groups, and each 

group consists with 200 individuals. After that, the confidence interval for each steepness value would 

be analyzed. 

 For calculation of steepness, we should set lifetime (maximum age) and mortality rate until 

death for each individual. Let us explain how to determine the maximum age and mortality 

rate. For simplicity, the individual will die in the simulation if the individuals reach at age, 20. 

That is, individuals do not survive beyond age 20 in these simulations. 

Firstly, the natural mortality rate (m) for each age class set as the random value generated 

following gamma frequency distribution,      
  

    
           where m is natural 

mortality (per year), and         are constant parameters. In this formulation the expected 

value of   is       ̅       and the coefficient of variance is          √ . 

Following the generated natural mortality, survival rate for each age class is determined.  

 Secondly, we generate the random value following uniform distribution. If the value is 

higher than the survival rate at some age, then that age is the terminal age of that individual. 

On the contrary, the individual still survive if the value is lower than the survival rate. 

 Finally, by using the estimated maximum age, we estimate steepness after calculating 

 ̃       ̃ . 



 

 

So we have 200 frequency distributions for 200 groups and the confidence intervals were 

calculated. 

 

Results and Discussions 

 The parameters used in this analysis are shown in Tables 1, 2 and 3, and the early life 

period is defined as            (same definition as Iwata et al., 2012 and Mangel et al., 

2010). Natural mortality for age 0 (i.e. 1.6) applied to stock assessment model is calculated 

from the individuals (of over 20cm ub fork length), maybe 60 or 60 some days after hatched). 

This means that the early life period calculated by using Bayliff’s growth curve (i.e. 257 

days) is too long and growth curves except Baylif’s one in table3 have similar ambiguity (see 

Table. 3). The definition (          ) is still much ambiguous as given in the previous 

work (Iwata et. al., 2012). 

 The same calculation method as Iwata et al., 2012 is usede in this document except the 

setting of individuals of maximum age. In the Iwata et al., (2012) we assumed that any 

individuals can survive until maximum age, i.e. age 20. However in this document, each 

individual has different life span with the maximum limit of age 20.. For the calculation of 

maximum age, we have to know about the parameters, i.e. average natural mortality 

 ̅                             . The average natural mortality  ̅ for several scenarios are 

given in Table 2. So the frequency distribution for generating natural mortality can be 

completely determined if the value   is given. However, we have no available information 

about the value   except for Bayliff’s growth curve (Mangel et al., 2010 stated that   is 9.7 

for Bayliff’s case). Therefore, we do sensitivity analysis also for  =7 and 11 in addition to 

9.7.  If   is high, the frequency of individuals with high mortality is expected higher than in 

the case of low   (see Fig. 1). Therefore, the lifetime will be expected shorter than the low 

 . 

 For applying several scenarios for natural mortality and growth curves on different models 

(production model or age structured model), no big significant differences appear in 

estimated frequency distribution of steepness (see. Fig. 3-5). That is, estimated steepness 

values are all located near the upper limit, one (see. Fig 3 shows frequency distribution for 

     . Fig 4 shows cumulative frequency distribution for      ). The stock recruitment 

relationship is very sparse. . 

 As a result, the estimated values in frequency distribution of steepness are near to one, i.e. 

within the interval of 0.997-0.999 for both cases of production model and age structured 

model. So it is appropriate that the steepness value at the coming stock assessment be set 

as 0.999. However, revised results given in the erratum of Mangel et al. (2010) indicated 

possible range of steepness of 0.8-1.0. The difference between their result and our result 



 

 

may come from the derivation of  ̃       ̃ . Therefore, at the coming stock assessment, the 

value in the range of 0.8 to 1.0 is recommended for the sensitivity analysis from our results 

and Mangel’s results. 
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Table 1. The parameters used in this document.  

 

 

 

Table 2. Natural mortality scenarios  

 

 

 

 

Table 3. Growth parameter options 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol meaning M scenario options

ISC 2008 {2.33+0.2(1+am)}/(1+am)

（M0=1.6，M1=0.46, M2=0.27, M3+=0.2）

ISC 2010 {1.986+0.25(1+am)}/(1+am)

（M0=1.6，M1=0.386, M2+=0.25）

M Average natural mortality

Symbol Meaning PBFT

R Sex ratio 0.5
A m Maximum age in simulation 12
s f Spawning frequency Every 3.3 days during 6 weeks = 12.73

a 50 Age at which 50% of a cohort is mature 5

列1
Asymptotic size,

L ∞

Growth rate,

K

Age at which size is

0,  a 0

Early life

history

Bayliff, 1994 320.5 0.1035 -0.7034 256

Shimose et al. (2009) 249.6 0.173 -0.254 92

Shimose et al. (2011)

Both sexes
252.1 0.165 -0.259 94

Shimose et al. (2011)

female only
240.5 0.192 -0.089 32

Stock Synthesis
(May-June, 2012)

254.41 0.15743 -0.560695 204

Figure 1. The gamma frequency distribution (     
  

    
          ) for natural mortality of PBF. In the case, we use average,  ̅  

as 0.276. The mean of gamma frequency distribution is       ̅       and the coefficient of variance is          √ .  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Frequency distribution of steepness value for several assumptions (ν=9.7). The difference between a-1 and a-2 (b-1 and 

b-2) is only the range of x axes (0.2-1.0 or 0.997-1.0). In first (second) column of each figure, production (age structured) model was 
used for estimation. In first to fifth row, growth curve in Bayliff (1994), Shimose et al. (2009), for both sex in Shimose and Takeuchi 
(2012), , for female only in Shimose and Takeuchi (2012), used in first PBF stock assessment WG 2012. 
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Figure 3. Cumulative frequency distribution of steepness value for several assumptions (ν=9.7). The difference between a-1 and a-2 

(b-1 and b-2) is only the range of x axes (0.2-1.0 or 0.997-1.0). In first (second) column of each figure, production (age structured) 
model was used for estimation. In first to fifth row, growth curve in Bayliff (1994), Shimose et al. (2009), for both sex in Shimose and 
Takeuchi (2012), , for female only in Shimose and Takeuchi (2012), used in first PBF stock assessment WG 2012. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Frequency distribution of steepness value for several assumptions (ν=7). The difference between a-1 and a-2 (b-1 and b-2) 

is only the range of x axes (0.2-1.0 or 0.997-1.0). In first (second) column of each figure, production (age structured) model was used 
for estimation. In first to fifth row, growth curve in Bayliff (1994), Shimose et al. (2009), for both sex in Shimose and Takeuchi (2012), , 

for female only in Shimose and Takeuchi (2012), used in first PBF stock assessment WG 2012. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Frequency distribution of steepness value for several assumptions (ν=11). The difference between a-1 and a-2 (b-1 and 

b-2) is only the range of x axes (0.2-1.0 or 0.997-1.0). In first (second) column of each figure, production (age structured) model was 
used for estimation. In first to fifth row, growth curve in Bayliff (1994), Shimose et al. (2009), for both sex in Shimose and Takeuchi 
(2012), , for female only in Shimose and Takeuchi (2012), used in first PBF stock assessment WG 2012. 


