

Reconsideration of estimation of catch at size for young Pacific bluefin tuna caught by Japanese small pelagic fish purse seine fisheries

Kazuhiro Oshima, Mikihiko Kai, Sigehide Iwata and Yukio Takeuchi

National Research Institute of Far Seas Fisheries 5-7-1 Orido, Shimizuku, Shizuoka, 424-8633, Japan

Jan.-Feb. 2012

Working document submitted to the ISC Pacific bluefin tuna Working Group, International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific Ocean (ISC), 31 January-7 February 2012, La Jolla, San Diego, California, USA. **Document not to be cited without author's permission**.

Reconsideration of estimation of catch at size for young Pacific bluefin tuna caught by Japanese small pelagic fish purse seine fisheries

Kazuhiro Oshima, Mikihiko Kai, Sigehide Iwata and Yukio Takeuchi (NRIFSF)

Introduction

Length measurements of young Pacific bluefin tuna (PBF) caught by Japanese small pelagic fish purse seine fishery have been conducted at Fukuoka fish market since 2002. Oshima and Takeuchi (2010) estimated catch at size of PBF landings caught by this fishery using length measurement data. They made the length frequency distributions by market size categories assuming the length frequency of fish within each size category did not vary between years or seasons. With some reservations on representativeness of the length frequency distributions within the market size categories, the ISC PBF Working Group (WG) accepted the results, because of relative consistency observed in the length distributions within each category for most years. The WG, however, recommended for the estimation of catch at size from this fishery: 1) to derive length compositions without data substitution, and 2) to derive length compositions with data substitution and identifying the substitution (Anonymous 2011). In this paper, we reviewed the assumption of no seasonal and between year variations in size frequencies of fish in each market size categories and investigated possibility of improving substitution procedures.

Materials and methods

Description of fishery

Japanese small pelagic fish purse seine fishery is assigned into Fleet 2 in the Stock Synthesis 3 (SS3) model for PBF and includes offshore and coastal fisheries harvesting young PBF at ages 0 and 1, in contrast to Japanese tuna purse seine, which catch larger PBF and is assigned to Fleet 3. The offshore fishery accounts for 98.8% on an average of annual landings in weight of Japanese small pelagic fish purse seine fishery since 2000. Average of 81% of PBF landings caught by the offshore fishery is made at the markets in Kyusyu region, especially at Fukuoka fish market located at the northern Kyusyu region (Fig. 1). Consequently, if accurate length frequencies can be estimated for landings in Kyusyu region through adequate sampling, they will represent well the PBF catch at size by this fishery.

Fish landed are sorted into market size categories (called hereafter as box-categories) according to body weight and put into separate boxes. The box-categories are classified roughly into two groups: one-fish-per-box; multi-fish-per-box (Fig. 2). In the market, PBF larger than 6 kg in body weight are recorded by weight classes of 0.5 kg intervals and individually put into boxes (one-fish-per-box). The notation of weight is by the lower limit. For example, the weight classes of 8.0 kg and 8.5 kg include fish of 8.0-8.4 kg and 8.5-8.9 kg, respectively. With regard to the multi-fish-per-box group, fish less than 6 kg are sorted by similar fork length and placed in boxes of a standard dimension (35 cm x 60 cm x 12 cm). The criteria for category-sorting are based on relative body lengths to the box. Hence, number of fish per box indicates size of fish, i.e. more fish per box

corresponds to smaller fish. On an average, 85.9% of landing in number is constituted by fish sorted into multi-fish-per-box group (Fig. 3). Ratio of PBF sorted into one-fish-per-box group tends to increase in the 4th quarter with growth of PBF.

Data

As described in Oshima and Takeuchi (2011), summary reports published by a wholesale firm "*Nishinihon Uoichi*" provide daily number of boxes of by box-category and by landing ports in the entire Kyusyu region. The summary reports were available for two periods between the 3rd quarter 1991 and the 3rd quarter 1995 and between the 1st quarter 2003 and the 4th quarter 2011. In addition, monthly number of boxes by box-category at all ports in Kyusyu region was available from 1997 through 2002.

In the summary reports, numbers of boxes are either recorded by each box-category or sometimes of several box categories aggregated (e.g. 50 boxes for 3-5-fish-per-box). When accumulated categories were reported, the number of boxes was allocated equally to all the box-categories involved (i.e. the total number of boxes was split evenly among the categories) (see Table 1). The numbers of boxes by the box-category were not available from the 4th quarter 1995 through the 4th quarter 1996.

Since 2002, length measurements have been conducted in Fukuoka market. Fukuoka market is one of the major markets, accounting for 62.6 - 76.5% (2007 – 2009) of landing in weight of PBF caught by this fishery in Kyusyu Island. Fork lengths by 1 cm interval with the records of box category are recorded. The length data obtained from 2002 through 2011 were used in this study.

Quarterly numbers of fish measured by the box-category are listed in Table 1 with quarterly landings in number and their proportion of total quarterly landing in number. Frequent market size categories the landing of which occurred in more than 20 quarters were 1-, 3-, 4-, 5-, 6-, 8-, 10- and 12-fish-per-box. The length measurement for PBF in the one-fish-per-box group started in the 4th quarter of 2007. The length measurements of fish in this group were conducted in 47.1-53.3% of fish in each quarter when PBF of the one-fish-per-box group were unloaded (Table 2). Quarterly number of fish measured by the box-category showed statistically significant increase in proportion to quarterly catch in number by the box-category (R²=0.423, p<0.001) (Fig. 4).

Estimation method of catch at size applied in the previous study

Estimation method of catch at size of overall landings applied by Oshima and Takeuchi (2011) was as follows. The length frequencies of PBF landings were made for each box-category by date of length measurements. Subsequently, daily length frequencies by the box-category were simply combined regardless to the year or quarter, to get a standard frequency for each category. The weight classes of 0.5 kg intervals for fish under 11.0 kg of one-fish-per-box group were combined into weight classes of 1 kg intervals. For example, the weight class of 6.0 kg includes non-combined weight class of 6.0 kg and 6.5 kg. In addition, the weight classes of 11.0 kg to 19.9 kg were combined into a single weight class due to very little sample size from these classes. Fish over 20 kg were ignored, because of rare landing. Yearly and quarterly catch at size of PBF unloaded

3

at the markets in Kyusyu region were estimated by raising the standard length frequencies for each box-category by the yearly and quarterly landing in number in the corresponding category. It should be noted that the size samples collected at Fukuoka market was raised to the total catch by this fishery in the entire Kyushu Region in this study. This is well justified the predominant importance of Fukuoka market for this fishery as previously noted.

Reconsideration of procedure for estimation of catch at size

As shown in Table 1, the length measurements were carried out frequently, although during the period between 2005 and 2010, the sampling efforts were less. The coverage rates defined as <number of quarters where length measurements were made for a box-category > over <the total number of quarters where PBF of the corresponding box-category were landed>, ranged from 25.0% to 48.6% for major box-categories. This means that the substituted length frequency data accounted for more than 50% of quarters. Therefore, if no substitutions were made for as suggested by the ISC-PBFWG, catch at size would represent only less than a half of the catches.

In order to explore appropriate procedures of data substitution, length data were analyzed regarding spatio-temporal changes in the length distribution within each box category. Generalized linear model (GLM) was conducted to clarify differences of mean length among possible effects, such as years, seasons and box categories and consequently to identify effects (with magnitude of variation of mean length within effects) for creation of length frequency data to be used for data substitutions by pooling in terms of the identified effects with more variation. Oshima and Takeuchi (2011) pointed out that the lengths of PBF landing sorted into multi-fish-per-box group increased within each box category, in 2008 and 2009. Hence, it was possible that the criteria of category-sorting at the landing port might have changed historically. Effect of period was incorporated in the GLM analysis applied only to the multi-fish-per-box group. The GLM model is as follows:

Length = Intercept + Period + Year + Quarter + Box category + Error (1) Where length, response variable; Period, Year, Quarter and Box-category, main effects of period, year, quarter and box-category as categorical variables; Error, error term with N(0, σ^2). The GLM model applied to the one-fish-per-box group corresponds to the model where the period effect was eliminated and the box-category effect was replaced by the weight class effect in Eq. 1. Consequently, full model consisted of effects of period, year, quarter and box-category for the multi-fish-per-box group and effects of year, quarter weight class for the one-fish-per-box group. Deviances were calculated for the full model and the reduced model where the main effect was eliminated one by one. The magnitude of variation of mean length within stratum (=effects) was evaluated with differences in deviance between the full model and the reduced model. The effect involving more large variation of mean length was considered as preferable effect where the length frequencies were combined when data substitution.

The catch at size during the periods between 2002 and 2011 when the length measurements were implemented was estimated through the procedures, which are

4

ISC/12-1/PBFWG/02

described in the following section. As for the substitution for catches prior to 2002, procedures are explained in the section "Catch at size before 2002". The length frequencies by the box category derived from small sample (< 10 fish) was not used. Uniform length frequency (combined regardless year and quarter as done in the previous studies) was applied to the 2-fish-per-box category where the proportion of catch was always less than 1 % of the total catch in number. The box-categories containing more than 13 individuals and over per box were combined into single market size category because of low sampling coverage from this class as well as proportion of fish of this categories in the catch. The number of boxes 7-, 9- and 11-fish-per-box categories was very scarce and no sampling has been done, during the periods between 2002 and 2011. Thereby, their numbers of boxes were divided into halves, each of which was added to the neighboring box-categories.

Results

Changes in length distribution by market size category

Lengths of PBF sorted into multi-fish-per-box group ranged approximately from 40 cm to 80 cm (Fig. 5). Generally, obvious inter-annual or seasonal variations in length frequency distribution within each box-category were not observed until the 4th quarter in 2008. However, during the period after the 4th quarter of 2008, sudden increases in length were observed in the following quarters: the 4th quarter of 2008 for the 3-, 4- and 5-fish per box categories; the 2nd quarter of 2009 for the 10- and 12-fish-per-box categories; and the 3rd quarter of 2009 for the 8-fish-per-box category. After sudden increases in length, lengths tended to vary among quarters. There were no marked changes in lengths in the 6-fish-per-box category. As for the one-fish-per-box category, no significant increase or decrease in lengths was observed.

GLM analysis

Based on yearly and quarterly changes in lengths in multi-fish-per-box group, two levels were set in the period effect according to yearly and quarterly changes in the length frequency in each box category. That is, breakpoint was empirically set at interspaces between the 3rd quarter and the 4th quarter in 2008 for the 3-, 4- and 5-fish-per-box categories and between the 4th quarter of 2008 and the 1st quarter of 2009 for the 6-, 8-, 10- and 12-fish-per-box categories.

Results of the GLM analysis are summarized in Table 3. At the model for the multi-fish-per-box group, the market size category was the most important effect for variations in mean lengths, because deviance of the reduced model where the box-category effect was eliminated was the largest. In the same way, the second and third most important effects were the year and period effects. There was small difference in deviance between the full model and the reduced model where the quarter effect was eliminated.

The main effects for the full model to be applied the one-fish-per-box group were selected using AIC. Significance of the quarter effect, however, was even with that of the year effect, because there was not so much of difference in deviance between the reduced

 $\mathbf{5}$

models where these two effects were eliminated one by one.

Data substitution procedure

The GLM analysis for the multi-fish-per-box group supported keeping stratum of the box-category throughout creation of the catch at size. Data substitution procedures (Procedure 1) adopted in this study are summarized in Table 4 and explained below by step.

Procedure 1

<u>Step 1.</u> As for the multi-fish-per-box group; the length frequencies were combined for year/quarter/box-category stratum. This year-quarter-box-category specific length frequency was raised to the total landing in the matching box-category, as recommended by the WG for the previous study (Oshima and Takeuchi 2011). Step 2. For fish which lacks matching size data during the above Step 1; following the results from the GLM analysis, quarterly length frequencies were combined for each year with keeping stratum of box-category, because difference in deviance between the full model and the reduced model where the year effect was eliminated was the second largest. This year-box-category specific length frequency was used to substitute the size data for the catch which lacks size information in Step 1. Step 3. The fish still lacks matching size data even in Step 2; year-box-category specific length frequencies are combined for all the years, i.e. one single length frequency for each box-category. However those were made separately for two periods described in the previous section "GLM analysis". Subsequently, these standard combined length compositions were used for the catch which had no matching size data.

Procedure 2

The uniform (standard) length frequency for each box-category was created combined for year-quarter but individually for each box-category and this was used for all the catches i.e. the same data substitution procedure applied in the previous study (Oshima and Takeuchi 2011).

Procedure 3

<u>Step 1.</u> This procedure is added to the list of data substitution procedure as sensitivity test to inspect effect of data substitution. The length frequencies combined for year stratum (year-box-category specific length frequency) were raise to the total landing in the matching box-category.

<u>Step 2.</u> For fish which lacks matching size data during the above Step 1; the period-box-category length frequencies were used to substitute the size data for the catch which lacks size information in Step 1.

Procedure 4

This procedure is also for the sensitivity test as well as Procedure 3. The period-box-category specific length frequency categories were raised to the total

landing in number in the matching box-category.

The raised length frequencies obtained through the procedures described above for each box-category were aggregated by year and quarter to create total catch at size on yearly and quarterly basis.

As for the one-fish-per-box group, year and quarter had just small effects on the change in lengths in each weight class shown in Table 3b. Therefore, uniform length compositions were made for each weight class and used for estimating the catch at size.

Catch at size from 2002 through 2011

The catch at size with Procedure 1 were different from those obtained by Procedure 2, which were used in the previous study by Oshima and Takeuchi (2011) (Fig. 6). Generally, changes are note in the location of the modal length: the modal length by Procedures 1 being larger than by Procedures 2. The lengths in each box category increased apparently from the 4th quarter of 2008, might have related to the increments of modal lengths estimated through Procedures 1. The increments of modal lengths were 2 to 6 cm, corresponding to 1-3 length-bin differences for the fish smaller than 58 cm in the SS3 model for PBF.

Procedures 3 and 4 were tested by applying to particular quarters, as shown in Fig. 7, since those quarters were better sampled and less substitution made (see Table 1). Application of Procedures 3 and 4 resulted in catch at size close to those derived from Procedure 1. There were, however, slightly prominent differences in length at modal length class in the 2nd quarter of 2005, the 4th quarter of 2008 and the 2nd quarter of 2009. In the 2nd quarter of 2005, modes were at 52 cm, 46 cm and 48 cm in length in catch at size by Procedures 1, 3 and 4, respectively. The maximal difference among the modal lengths was 6 cm, which was equal to 3 length-bin difference in the SS3 model.

Catch at size before 2002

There was no acute discrepancy of the length frequency distributions between Procedures 1, 2 and 3. It was concluded that data substitution manner in Procedures 3 and 4 provides relatively reliable catch at size for PBF landings. Therefore, Procedure 4 was applied for the estimation of catch at size for data before 2002 when there was no length measurement data were available and hence Procedure 1 is not applicable.

The frequent box-categories the landing of which occurred in more than 20 quarters from 1991 through 2001 except for 1996 were 1-, 3-, 4-, 5-, 6-, 8-, 10- and 12-fish-per-box (Table 5). Although, the occurrence of landing for the 2-fish-per-box category also frequent with 22 quarters, total landing in number of this category from 1991 through 2001 was much smaller than those in other frequent categories. The length frequency distributions of catch at size from the 3rd quarter of 1991 through 2001 were estimated through Procedure 4 (Fig. 8).

Discussion

As shown in Table 1, the length measurement data for the frequent box-category were

7

absent from more than 50% of quarters with PBF unloading occurred from 2002 through 2011. Hence, if the data substitution is not applied, the catch at size would be quite incomplete.

In this paper, four different data substitution procedures were analyzed based on temporal changes in length composition by the box category. The following procedures were adopted: Procedure 1, for the period between 2002 and 2011; Procedure 4, for the period between 1991 and 2001. The catch at size estimated in this study is expected to become more reliable than previous study's ones. The GLM analysis indicated that the year effect was more important for the differences of the mean lengths within each box-category than the period effect. As shown in Fig. 7, the catch at size estimated by Procedure 4 (only with period and box-category specific strata), produced quite similar results of those by Procedure 1. It was concluded that application of Procedure 4 itself was reasonable for the estimation of catch at size before 2002. There was, however, no length measurement data before 2002, thereby the change in lengths within each box category could not have been examined even if the criteria of category-sorting for PBF landings at the market was had been changed. There are two options for the estimation of catch at size before 2002: the first one involves application of substitution procedures 4 to the landings; and another to prepare no size data. Conventional size data for Fleet 2 in the SS3 model for PBF were provided and used in past analysis for the period between the 1st quarter of 1997 and the 2nd quarter of 2008. The size data from 1997 through 2001 will be lost from the analysis if we adopt the second option above. The difference in the modal length between catch at size and frequencies of actual samples is expected to fall within 4-6 cm as illustrated in Fig. 6, if the lengths in the market size category were not dramatically changed before 2002. In addition, the size data from 1991 through 1995 can be added to the input data for the SS3 model if application of Procedure 4 is approved, thereby information on size of a strong year class of 1994 will become available (As previously explained, there are no catch data by the box category for 1996 and hence the data would be missing for that year, no matter what the procedures were applied). For these reasons, it is highly recommended that the catch at size before 2002 are estimated through Procedure 4 for use in the next stock assessment.

Acknowledgement

We thank Dr. Makoto Miyake for his helpful advices for our study and great contribution for preparing this document.

References cited

- Anonymous. 2011. Report of the Pacific bluefin tuna Working Group Workshop. ISC Plenary. July, 2011. San Francisco, U.S.A. 34pp.
- Oshima, K. and Takeuchi, Y. 2011. Approaches for estimation of catch at age of young Pacific bluefin tuna caught by Japanese small purse seine fisheries. ISC/11-1/PBFWG/07.

Table 1Summary of quarterly landing in number by box-category, its proportion to total quarterly catch in number and number of fish measured by
box-category, denoted as Number, % and N, respectively. The second last row indicates number of quarters when PBF sorted into corresponding
box-category was landed and when length measurement was carried out. The last row shows ratio of number of quarters with length measurement for total
number of quarters with landing of PBF. Cells shaded or colored in gray indicate quarters or years when there is no length measurement data, respectively.

															Mar	ket siz	e category															
V	0		1			2			3			4			5			6			7			8			9		1	10		
rear	Quarter	Cato	h	м	Catc	h		Catc	h	N	Catc	h	N	Cato	:h	N	Catch		м	Catc	h	N	Catch	1	м	Catc	h	N	Catch		N	
		Number	%	IN	Number	%	IN	Number	%	IN	Number	%	IN	Number	%	IN	Number	%	IN	Number	%	IN	Number	%	IN	Number	%	IN	Number	%	IN	
	1	2,400	17.9								160	1.2		325	2.4		1,350	10.0					2,600	19.3					850	6.3		
2002	2							75	0.0		8,840	1.7		450	0.1		148,590	28.8					154,600	29.9					135,350	26.2		
2002	3										1,380	0.4		1,275	0.4		128,940	38.1					134,240	39.6					70,050	20.7		
	4				320	0.2	68	186,225	88.2	1282	22,380	10.6	720	100	0.0	30	390	0.2	72				80	0.0	32				250	0.1	140	
	1	400	2.0	1	83	0.4		73	0.4		208	1.0		121	0.6		436	2.2		48	0.2		2,486	12.4					10,443	52.2		
2002	2	4,690	1.1		102	0.0	6	1,148	0.3	36	4,245	1.0	52	1,828	0.4	20	22,710	5.2	132				182,324	41.9	191	504	0.1		194,754	44.8	100	
2003	3	4,030	1.6	i				624	0.2		1,375	0.5		460	0.2		49,428	19.5	184				153,551	60.5	288				44,193	17.4	150	
	4	117,840	53.2		771	0.3	2	17,070	7.7	135	4,933	2.2	81	918	0.4	30	27,962	12.6	186				44,909	20.3	86				7,294	3.3		
	1	590	5.2							30	578	5.1	16	2,375	21.1	30	4,027	35.7	60				3,181	28.2	64				516	4.6	20	
0004	2	12.170	6.0	1				3.794	1.9	15	32.145	15.7	180	44,165	21.6	210	26.898	13.2	168				56,751	27.8	247				28.392	13.9	120	
2004	3	,						, i			,						,						,						, i			
	4	17.290	2.9	1				10	0.0	9	223	0.0	12	4.487	0.8	55	43.493	7.3	119	147	0.0		63.098	10.6	136				88.955	15.0	199	
	1										88	0.0		1,472	0.3		14,719	3.1					58,333	12.4					121,559	25.9		
	2							1.585	0.3		8.641	1.9		1.770	0.4	20	73,808	15.8	30				215.067	46.1	24				143,440	30.7	85	
2005	3	1.500	0.3					15	0.0		13.128	2.2		80,384	13.8		243,207	41.6					219,691	37.6					26,303	4.5		
	4	118,460	48.7		1.287	0.5		1.815	0.7	30	1.857	0.8		914	0.4		12,773	5.3	60				69.650	28.6	85	272	0.1		20.031	8.2	80	
	1	320	12		1,207			1,010	•		147	0.5		183	0.7		220	0.8					00,000	2010					1 000	3.7		
	2	81 545	17.0					1014	02		15 505	3.2		12 096	2.5		38 311	8.0					167 641	34 9					162 812	33.9		
2006	3	3 370	16.9					570	29		1 2 2 7	6.2		1 521	7.6		2 465	12.4					8073	40.5					2 692	13.5		
	4	136 147	35.8		377	01		2 5 2 6	0.7	21	668	0.2		19	0.0		14 344	3.8	30	652	0.2		88 375	23.2	96				137 305	36.1	80	
	1	16 694	34.1		• • •	0		18	0.0		387	0.8		7 017	14.3		11,264	23.0		001	0.2		7 436	15.2					2 697	5.5		
	2	8 745	3.1					133	0.0		789	0.3		10 4 1 4	3.7		44 130	15.8	30				131 145	47.1	32				82 1 10	29.5	40	
2007	3	0,710	0.1					30	0.0		60	0.4		2 3 3 8	137		6 505	38.1					5 713	33.4	UL.				2 4 4 2	14.3	10	
	4	70 4 70	69.8	676				69	0.2	60	00	0.4		2,000	10.7		92	00.1					11 938	11.8	16				14 000	13.9		
	1	4 600	9.4	070				00	0.1	00	57	0.1		96	0.2		10 154	20.6					22 366	45.5	10				11,582	23.5		
	2	11 426	23								230	0.0		9 1 3 7	1.8		59 4 18	11.8					179 720	35.8					222 582	<u>44</u> 4		
2008	3	1 350	0.2					1 965	03	29	29 020	4 1	32	89,800	12.8		136 590	19.5	60				332 320	475	64				108 410	15.5	60	
	4	20,260	6.3	200				14 959	47	23	162 582	50.8	32	29 170	9.1	25	6 587	2 1	00				17 843	5.6	04				27 197	8 5	30	
	1	11 765	15.4	108				53	0.1	01	517	00.0	02	8 366	11.0	20	15 277	20.0		153	0.2		21 071	27.6					17 725	23.2	00	
	2	838	0.2	82				00	0.1		20	0.7		5 904	1 2		23 748	20.0		100	0.2		83.479	171					254 511	52.3	90	
2009	3	500	0.2	67				170	0 1		4 793	2.6		48 967	26.1	30	38 190	20.4					62 987	33.6	16				28 233	15.1	90	
	4	2 100	33.0	0,				81	13		869	14.0		486	7.8	00	43	0.7					857	13.8	10				1071	17.3	50	
	1	1 280	1 1	30				01	1.0		005	14.0	64	75	0.1	60	10 700	9.1	120				67 2 27	57.4	60				37 783	32.3		
	2	4 1 1 0	2.5	135				405	0.2		8 700	54	07	19 913	12.3	00	26 385	16.3	120				74 900	46.2					27 675	17.1	51	
2010	2	4,110	0.3	133				675	10.2		2 9 7 3	16.3		1 0 0 2	32 1		20,303	10.5					74,300	40.2	"				27,075	17.1	5	
	1	1 600	20.5					075	10.5		2,073	40.5		1,332	02.1		030	10.0					300	20					2 6 7 5	313		
	4	1,000	20.0																				500	175					2,075	20.0		
	2	1,200	30.0											750	0.1	26	46 526	7 5	462				210 106	25.0	070				227 107	52.4	102	
2011	2													732	0.1	30	40,520	107	402				210,190	42.1	212				327,107	JZ.4	192	
	3	140 000	66.1	017	577	0.2	1	21 405	0 5	40	5 0 5 0	26	20	083	0.0	E	0,/00	12.7	00				29,787	43.1	0.0				20,017	41.7	60	
с.	4	140,990	00.1	91/	2 5 1 7	0.3	70	21,493	9.5 7 7	48	224 576	2.0	1 2 1 0	200 202	0.2	C 551	1 200 604	4./	1 902	1.000	0.0	<u> </u>	2014 406	9.7	1 000	775	0.0		13,300	25.4	1 5 9 7	
No of	quarter	000,700	0.0	2,215	3,317	0.0	/0	200,097	۷./	1,720	334,070	ა.ე	1,219	390,392	4.1	10	1,309,084	13.8	1,003	1,000	0.0	<u> </u>	2,914,420	30.7	1,003	1/5	0.0	0	2,407,140	20.4	1,567	
110.01	yuarter (31	25.0	8	· · /	12.0	<u>ئ</u>	20	16.2	12		20.2	10	30	22.2	12	3/	0.5	10	4	0	0	3/	0.6	61	2		U	30	47	L 1/	
	יט	1	20.0		4	†∠.J			4U.Z			00.0			0.0		4	0.0		0	.0		4	0.01		1			44./			

Oshima et al. (2012)

Table 1 cont.

											14				Mark	et size ca															0			
Veer	Overter	11 12 Catch N Catch Number % Number %					1	13		1	4	15			1	6		1	7		11	8		1	9		2	20		21		SI	um	
rear	Quarter	Catc	h	М	Catch	n l	м	Catc	h	м	Catc	h N	Cato	;h	м	Catc	h	N	Catch	1	м	Catch		ы	Catch	۱	N	Catc	h	N	Catch		Catch	N
		Number	%	IN	Number	%	IN	Number	%	IN	Number	%	Number	%	IN	Number	%	IN	Number	%	N	Number	%	IN	Number	%	IN	Number	%	IN	Number	%	Number	IN
2002	1 2 3 4				5,760 68,760 2,880 1,320	42.8 13.3 0.9 0.6																											13,445 516,665 338,765 211,065	2,344
2003	1 2 3 4	152	0.8		1,362 5,802	6.8 1.3		2,915 2,382	14.6 0.5	13	620 1,568	3.1 0.4 14	208 9,161	1.0 2.1	30	443	2.2					3,848	0.9	18			19						19,998 435,064 253,662 221,697	631 622 520
2004	1 2 3 4				53.001	8.9	72	272	0.0		152.023	25.6	86,347	14.5		29.557	5.0	34	24.821	4.2		1.884	0.3		25.056	4.2					3.297	0.6	11,268 204,315 593,962	220 940 636
2005	1 2 3 4	5.200	2.1		135,383 21,513 362	28.8 4.6 0.1	36 24	7,439 150 7,452	1.6 0.0 3.1		12,017 161	2.6 0.0	66,442 173 905	14.1 0.0 0.4	29	25,619 184 2,253	5.5 0.0 0.9		7,296	1.6		12,480	2.7		6,273	1.3		440	0.1				469,561 466,491 584,228 243,230	195 308
2006	1 2 3 4				9,000 1,622 279	33.4 0.3 0.1		9,750	36.2				2,850	10.6		3,040	11.3											200	0.7		210	0.8	26,920 480,545 19,918 380,694	227
2007	1 2 3 4				1,573 1,102 4,431	3.2 0.4 4.4					1,553	3.2				323	0.7																48,962 278,566 17,088 101,001	102
2008	1 2 3 4	451 7.052	0.1		18,697 360 24,975	3.7 0.1 7.8		329 1.017	0.7		740	0.2	2.901	0.9	15	580	0.2		788	0.2	17	1.617	0.5		551	0.2		580	0.2		609	0.2	49,184 501,660 699,815 320,007	245 350
2009	1 2 3 4				1,447 110,045 3,420 686	1.9 22.6 1.8 11.1	96 108	435	0.1		562	0.1				1,316	0.3		1,398	0.3		1,480	0.3		1,562	0.3		1,645	0.3				76,374 486,943 187,260 6,193	108 268 311
2010	1 2 3 4				2,730	35.0		488	6.3	30																							117,065 162,088 6,210 7,793	334 190 30
2011	1 2 3 4				168 26,996 1,200 2,040	5.0 4.3 1.7 0.9	94 7	182 2,540	5.4 0.4		196 631	5.8 0.1	676	0.1		240	0.0		256	0.0													3,378 623,919 69,137 225,378	1,056
SL	ım	12,855	0.1		506,912	5.3	437	35,351	0.4	43	170,071	1.8 14	169,664	1.8	74	63,555	0.7	34	34,559	0.4	17	21,308	0.2	18	33,442	0.4	19	2,864	0.0		4,115	0.0	9,479,509	11,636
No. of	quarter	4		0	28	25.0	7	13	5.4	2	10	0.0	9	3.3	3	10	0.0	1	5 20	0.0	1	<u>5</u> 20	.0	1	4 25	i.0	1	4		0	3) <u>39</u> 56	<u>22</u> 5.4

Table 2 Summary of quarterly landing in number by weight class in the one-fish-per-box group, its proportion to total quarterly catch in number and number of fish measured by weight class, denoted as Number, % and N, respectively. The second last row indicates number of quarters when PBF sorted into corresponding weight class was landed and when length measurement was carried out. The last row shows ratio of number of quarters with length measurement for total number of quarters with landing of PBF. Shaded cells indicate quarters when there is no length measurement data.

						Weight class																Quantaulu	
Veer	Quartar	6.0,	, 6.5kg		7.0,	7.5kg		8.0,	8.5kg		9.0,	9.5kg		10.0,	10.5k	g	11.0-	-19.5k	g		Sum		Quarterly
Tear	Quarter	Cato	;h	М	Catc	h	N	Catc	h	N	Catc	h	м	Catcl	h	м	Catc	h	М	Catc	h	М	
		Number	%	IN	Number	%	IN	Number	%	IN	Number	%	IN	Number	%	IN	Number	%	IN	Number	%	IN	number
	1	429	0.9		443	0.9		1,156	2.4		3,516	7.2		3,643	7.4		7,193	14.7		16,379	33.5		48,962
2007	2	180	0.1		202	0.1		340	0.1		1,297	0.5		2,049	0.7		3,594	1.3		7,663	2.8		278,566
2007	3																						17,088
	4	14,603	14.5	129	14,739	14.6	160	10,871	10.8	114	10,598	10.5	184	6,643	6.6	74	12,396	12.3	15	69,850	69.2	676	101,001
	1	75	0.2		126	0.3		450	0.9		450	0.9		245	0.5		994	2.0		2,338	4.8		49,184
2008 2		698	0.1		784	0.2		850	0.2		863	0.2		946	0.2		4,507	0.9		8,649	1.7		501,660
2008 3								13	0.0		25	0.0		25	0.0		1,282	0.2		1,346	0.2		699,815
	4	4,052	1.3	9	3,792	1.2	69	4,302	1.3	68	3,711	1.2	34	1,996	0.6	15	2,407	0.8	5	20,260	6.3	200	320,007
	1	625	0.8	6	930	1.2	11	1,329	1.7	25	1,321	1.7	21	844	1.1	15	3,605	4.7	30	8,655	11.3	108	76,374
2009 2		34	0.0	5	52	0.0	12	55	0.0	23	55	0.0	25	55	0.0	11	110	0.0	6	360	0.1	82	486,943
2003	3	8	0.0	6	8	0.0	7	8	0.0	8	8	0.0	7	8	0.0	5	458	0.2	34	500	0.3	67	187,260
	4	388	6.3		388	6.3		388	6.3		388	6.3		388	6.3		162	2.6		2,100	33.9		6,193
	1	143	0.1	2	148	0.1	4	148	0.1	13	148	0.1	5	148	0.1	5	528	0.5	1	1,265	1.1	30	117,065
2010	2	352	0.2	18	378	0.2	30	613	0.4	35	613	0.4	29	399	0.2	14	1,554	1.0	9	3,909	2.4	135	162,088
2010	3													4	0.1		16	0.3		20	0.3		6,210
	4	141	1.8		141	1.8		141	1.8		141	1.8		141	1.8		865	11.1		1,572	20.2		7,793
	1	50	1.5		50	1.5		50	1.5		50	1.5		50	1.5		452	13.4		702	20.8		3,378
2011 2																							623,919
3																							69,137
4		29,649	13.2	161	30,429	13.5	228	30,549	13.6	214	30,134	13.4	192	21,909	9.7	109	6,321	2.8	13	148,990	66.1	917	225,378
Si	um	51,428	1.3	336	52,611	1.3	521	51,261	1.3	500	53,318	1.3	497	39,494	1.0	248	46,446	1.2	113	294,559	7.4	2,215	3,988,018
No. of	quarter	15		8	15		8	16		8	16		8	17		8	17		8	18	17	9	
0	%	5	53.3		5	3.3		5	0.0		5	0.0		4	7.1		4	7.1		ļ	50.0		

Table 3 Deviance and Akaike Information Criterion (AIC) for full model and reduced models from GLM analysis applied for multi-fish-per-box group (a) and one-fish-per-box group (b)

Model	Df	Deviance	AIC
Full model		59,441	41,777
Reduced model			
-(Quarter)	3	60,204	41,883
-(Period)	1	61,306	42,046
-(Year)	9	63,125	42,287
-(box-category)	6	279,088	55,354

(b) One-fish-per-box group

(b) One fish per box group			
Model	Df	Deviance	AIC
Full model		6375.6	7799.3
Reduced model			
-(Quarter)	1	6477.6	7827.9
-(Year)	3	6537.6	7841.7
-(Weight class)	4	21483.3	10133.4

Table 4 Type of box-category-specific length frequencies by step used for data substitutions of Procedures 1-4.

Drogoduro	Type of box	k-category specific lengt	h frequency
Procedure	Step 1	Step 2	Step 3
1	Year-quarter specific	Year specific	Period specific
2	Uniform		
3	Year specific	Period specific	
4	Period specific		

	Market size category ar 0 uarter 1 2 3 4 5 6 8 10 12 13 14 17 18 20 21 Sum																															
Year	Quarter	1		2		3		4		5		6		8		10		12		13		14		17		18		20		21		Sum
		Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	
1001	3	95	0.1	20	0.0	7.830	10.1	4.440	5.7	1.900	2.5	47.400	61.3	10.000	12.9	5.400	7.0	240	0.3													77.325
1991	4	448.102	63.8	724	0.1	15,182	2.2	1,392	0.2	739	0.1	132,527	18.9	92,339	13.1	11.345	1.6															702.349
	1	38,581	78.9	20	0.0	188	0.4	1.390	2.8	88	0.2	6.855	14.0	1.800	3.7	,																48.921
	2	58.815	24.7	988	0.4	117.507	49.3	60,790	25.5			392	0.2	.,===																		238,492
1992	3	13 495	77 2	51	0.3	3 746	21.4	184	11																							17 476
	4	290	8.8	• •	0.0	150	4.5					960	29.1	1 600	48 5	300	91															3 300
-	1	31 118	79.8	120	0.3	283	0.7	2 9 9 2	77	1 658	43	1 970	5.1	768	2.0	67	0.2															38 976
	2	11 314	12.3	75	0.0	10 560	11.5	31,085	33.8	11 456	12.4	16.079	17.5	2 709	2.0	0,	0.2									1 083	12	6.019	65	1 685	18	92.067
1993	3	11,014	12.0	51	0.1	1 1 8 3	5.7	10.875	52.4	4 548	21.0	4 002	10.3	2,700	0.4											1,000	1.2	0,010	0.0	1,000	1.0	20 740
	4	95	8 9	3	0.2	1,105	0.7	10,070	0.6	4,040	21.5	300	28.0	560	523	100	03															1 070
-	1	1 5 7 0	27.4	0	0.0		0.0	120	2.0	1 550	26.0	960	20.0	500	52.5	100	5.0															4 200
	2	3 743	26			376	03	5 692	2.5	30 241	21.0	900	62.6	13.845	9.6																	144 154
1994	2	3,743	1.5			101	10.3	3,032	17	30,241	21.0	30,230	02.0	13,045	5.0	2 0 7 2	70 /															2642
	4	40	1.5			220	0.6	202	0.7	1 269	2 1	21 644	26.0	20.022	10.0	5 9 5 1	0.7	624	1.0													60 1 50
	1					16	0.0	002	0.7	5 267	2.1	22,044	10.5	102 490	49.9	90.052	26.0	651	0.2			7 9 9 6	2.6	020	0.4	070	0.4					222 402
1005	2					10	0.0	270	0.7	100	0.1	12 276	0.5	91 420	50.1	40 204	200.0	261	0.0	1 0 7 0	14	2 1 2 1	1.5	000	0.4	075	0.4					120.040
1995	2					2 000	0.2	40 250	0.3	109	0.1	260 609	20.0	242 502	00.Z	40,394	20.9	201	0.2	1,979	1.4	2,131	1.5									655 500
	1	47.060	20.0			2,000	0.3	49,200	7.5	2 750	1.7	200,038	10.2	50 160	21.0	33,334	1J.Z	10 100	116													157.005
	2	1 6 2 5	29.9	20	0.0	12 260	4.0	116 490	46.4	24 050	12.0	21 220	12.2	20,100	11.5	10 700	12	14 520	5.0													250.955
1997	2	F 425	0.0	20	0.0	12,300	4.5	104 220	16.2	00 275	10.9	207.050	12.0	20,000	14.0	1 1 5 0	4.0	10.004	0.0													230,833
	3	22 750	0.0	6 760	1.0	220 000	69.6	26 560	10.5	00,375	13.0	207,000	45.0	09,520	2 1	2 750	0.2	22 220	2.0 6.4													240,244
	1	41 660	607	0,700	1.9	230,000	1.2	1 1 6 0	10.5	1.075	1.6	16 470	24.0	7,440	1.2	2,750	1.1	22,320	5.1													66 465
	2	41,000	171	210	0.3	1 470	1.3	20 200	20.2	2 000	1.0	21 200	24.0	11 000	1.0	/50	1.1	3,420	0.1													00,405
1998	2	10,960	17.1	100	0.0	0.745	1.0	20,300	30.3	2,000	12.0	31,090	34.1	11,000	11.0			1,900	2.1													93,450
	3	490	42.5	100	0.2	2,745	3.4	38,080	48.0	10,950	10.0	23,940	30.1	15 640	0.3	050	0.4	2,400	3.1													/9,020
-	4	10 040	42.0	40	0.0	210	0.3	20,900	9.0	41,175	19.0	44,730	20.0	10,040	1.2	3 600	7.2	2 2 4 0	0.2													210,710
	2	10,240	07.0	40	0.0	5 070	0.4	2 4 2 0	1.0	25 175	10.7	114 000	61.6	20,300	41.0	3,000	7.5	2,240	1.0													49,200
1999	2	900	0.5	40	0.0	10 700	2.7	3,420	20.4	150,000	19.0	76 770	20.7	24,200	10.1			12,400	1.0													271 620
	3	E1 005	157	10	0.0	12,700	0.4	113,000	30.4	130,000	40.4	10,770	20.7	0,900	1.9	0 000	2.0	105.000	5.2													371,030
	4	01,320	10.7	10	0.0	210	0.1	000	0.0	24,000	7.5	42,960	13.1	33,080	10.1	9,900	3.0	105,300	10.5													327,475
		43,343	38.0	50	0.0	11 005	0.0	220	0.2	1,075	0.9	3,690	3.2	15,040	13.2	31,200	27.3	18,780	10.5													114,088
2000	2	3,270	0.5			11,895	1./	22,980	3.2	300	0.0	80,460	11.3	426,440	59.7	150,050	21.0	18,360	2.6													/13,/55
	3	4,620	0.7			12,225	1.8	235,300	34.3	48,675	/.1	178,950	26.1	192,360	28.0	13,000	1.9	840	0.1													685,970
	4	690	0.2	70	0.0	48,345	16.9	/5,940	26.6	6,075	2.1	31,050	10.9	38,720	13.6	28,900	10.1	55,680	19.5													285,400
1		11,830	2.4	/0	0.0	270	0.1	2,680	0.5	150	0.0	1,/40	0.3	32,040	6.4	329,600	05.6	123,/92	24./													502,172
2001	2	380	0.1			60	0.0	560	0.1	225	0.0	95,/84	13.0	329,/52	44.8	24/,450	33.7	61,140	8.3													/35,351
	3	1,630	4.3	40	0.1	/5	0.2	860	2.2	4,1/5	10.9	21,420	55.9	9,840	25.7	250	0.7															38,290
-	4	690	1.3	0.000	0.1	15	0.0	40	0.1	25	0.0	30,420	55.7	10,640	19.5	900	1.6	11,880	21.8	1.070	0.0	10.007	0.1	000	0.0	1.000	0.0	0.010	0.1	1.005	0.0	54,610
SI No. 1	um	981,242	11.7	9,603	0.1	554,453	6.6	9/1,907	11.6	511,899	6.1	1,/68,474	21.1	1,924,298	22.9	1,084,565	12.9	556,811	6.6	1,979	0.0	10,027	0.1	830	0.0	1,962	0.0	6,019	0.1	1,685	0.0	8,385,755
No. of	quarters	31		22		35		36		31		35		33		26		23		1		2				2		1		1		37

Table 5 Quarterly landing in number by box-category and its proportion to total quarterly catch, denoted as Number and %, respectively. The last row indicates number of quarters when PBF sorted into corresponding market size category was landed.

Fig. 1 Yearly and quarterly landing in weight of PBF.

(a) Multi-fish-per-box

(b) One-fish-per-box

Fig. 2 Pictures of PBF landings in multi-fish-per-box (a) and one-fish-per-box (b). In the right picture, lateral figures of box show individual body weight.

Fig. 3 Landing in number of PBF by box-category unloaded at the markets in Kyusyu region.

Fig. 4 Plot of quarterly number of fish measured by box-category against correspondent quarterly catch in number. X- and Y-axes are logarithmic axes. Gray thick line indicates regression line.

Multi-fish-per-box

Fig. 5 Boxplots of length by quarter of PBF landings in each market size category. Vertical red lines indicate breakpoints between years.

Fig. 6 Quarterly catches at size of PBF unloaded in Kyusyu region from 2002 through 2011 estimated through Procedures 1 and 2. Blue and orange lines indicate the frequency distributions derived from Procedures 1 and 2, respectively.

Fig. 6 Cont.

Fig. 7 Comparison of catches at size estimated through Procedures 1, 3 and 4 in the quarters when there were low data substitutions.

Fig. 8 Quarterly catch at size of PBF unloaded in Kyusyu region from 1991 through the 3rd quarter of 1995 and from 1997 through 2001 estimated through Procedure 4.

Fig. 8 Cont.