ISC/25/PLENARY/07

PLENARY 07

25th Meeting of the International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific Ocean Busan, Republic of Korea 17-20 June 2025

NATIONAL REPORT OF THE REPUBLIC OF KOREA: KOREAN TUNA AND TUNA-LIKE FISHERIES IN THE NORTH PACIFIC OCEAN IN 2024¹

National Institute of Fisheries Science 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Rep. of Korea

June 2025

¹ Prepared for the 25th Meeting of the International Scientific committee on Tuna and Tuna-like Species in the North Pacific Ocean (ISC) held 17-20 June 2025, in Busan, South Korea. Document should not be cited without permission of the authors.

Left Blank for Printing

SUMMARY

Korean distant water tuna and tuna-like fisheries in the Pacific Ocean consist of both longline and purse seine fishery. There were 94 active longline vessels and 22 active purse seine vessels in 2024. The number of longline vessels remained below 100 since 2015, and the number of purse seine vessels remained the same as the previous year. The two types of Korean fisheries harvested 51,736 t of tuna and tuna-like species in the North Pacific Ocean in 2024. The total catch of the longline fishery was 23,866 t, **a** 30% increase over 2023, while the purse seine fishery harvested 27,870 t, a 72% rapid decrease year-to-year. The longline fishery mainly targeted yellowfin and bigeye tunas, whose catch accounted for 45.2% and 44.1% of the total catch in 2024. The dominant species of the purse seine fishery was skipjack tuna (96.9%), followed by yellowfin tuna (2.8%) and bigeye tuna (0.3%). Pacific bluefin tuna (PBF) is harvested by some coastal and offshore fisheries in the Korean waters. The offshore large purse seine fishery operates in the waters surrounding Jeju Island. In 2024, the PBF catch of the offshore purse seine fishery was 307 t, which accounted for 39.9% over the total catch, and trawl fishery caught 23 t in 2024. In 2024, the catch of large PBF (30kg or greater) accounted for 55% of the total catch.

1. INTRODUCTION

Korean distant water tuna and tuna-like fisheries in the Pacific Ocean consist of a longline fishery and a purse seine fishery. The tuna longline fishery (hereinafter referred to as 'longline fishery') commenced its first fishing in the Indian Ocean in 1957, explored the Pacific Ocean in 1958, and expanded to the Atlantic Ocean in 1967. The number of active vessels peaked at 220 in 1991 and has decreased thereafter.

The tuna purse seine fishery (hereinafter 'purse seine fishery') started in 1971 with 3 purse seine vessels in the Eastern Pacific Ocean (EPO). It has developed into a fishery with helicopter-aided mass operations in 1979 for the first time. The number of active vessels peaked at 39 in 1990, sharply declined to 27-28 by the early 1990s, and maintained around 23-28 in the recent decade.

Korean distant water fisheries must operate under the *Distant Water Fisheries Development Act*, which came into effect on 4 February 2008. An electronic reporting (ER) system started its operation since 1 September 2015, and all Korean distant water fishing vessels must report their catch information in real time using this system. The catch and effort data reported via the ER system are monitored and managed by the National Institute of Fisheries Science (NIFS).

Pacific bluefin tuna (PBF) has been caught by domestic fleets in the Korean waters, mostly by offshore large purse seine fishery (hereinafter 'offshore purse seine fishery') which targets pelagic species such as mackerels by operating in the Korean waters. A Ministerial Directive on the conservation and management of the PBF stock came into effect on 26 May 2011 with an aim of monitoring and managing the fisheries associated with PBF. The directive has been amended several times, and the latest amendment was put into force in 2023. The Ministerial Directive specifies the annual PBF catch limit by fishery and province, and further improvements have been made in the catch reporting system as well.

This document provides information on catch and effort of the Korean distant water tuna and tunalike fisheries and on PBF catch of the Korean domestic fisheries.

2. FISHERIES

2.1. Distant water fisheries

2.1.1. Fleet structure

Table 1 and Fig. 1 describe the annual number of active Korean vessels in the Pacific Ocean by fishery type and vessel size. The number of purse seine vessels peaked at 39 in 1990, declined to 28 by 1996, and maintained at 23-28 thereafter. In 2024, as was in the previous year, 22 vessels were active, of which 2 vessels were in 501-1,000 GRT, 8 vessels were in 1,001-1,500 GRT, and 12 vessels were over 1,500 GRT. The number of longline vessels was at 220 in 1991 but declined to 108 by 2008 and showed a slight increase up to 126 by 2012. The number further declined and remained below 100 since 2015 and recorded 94 in 2024, of which one vessel was in 51-200 GRT, and 93 vessels were in 201-500 GRT.

2.1.2. Fishing pattern

Figs. 2 and 3 illustrate the catch and effort distribution of the purse seine and longline fisheries in the last 5 years.

In general, the purse seine fishery operated in the tropical area of the Western and Central Pacific Ocean (WCPO) between 140°E-150°W throughout the year, and its fishing area often extended to

the east depending on the oceanographic conditions. The fishing efforts of purse seine fleets from 2020 to 2022 were relatively concentrated in the western Pacific side such as, east of 165°E, but the fishing effort from 2023 extended towards the EPO. In 2024, the fishing effort of purse seine fleets operated between 150°E and 170°W, with a particular focus near 160°E (Fig. 2).

The longline fishery has operated mainly in the tropical area of 160°E-120°W. The fishing effort has become more concentrated in the central tropical area (10°S-10°N, 170°E-160°W). In 2024, the fishing effort extended towards the WCPO (Fig. 3).

2.1.3. Annual catch and effort

Annual catch and effort by Korean distant water tuna fisheries in the North Pacific Ocean are shown in Tables 2-3, and Fig. 2 and 3.

The fishing effort (no. of hooks) of the longline fishery was 37,191,000 hooks in 2024, i.e., 33% and 14% increase compared to the effort in 2023 and the average effort of the recent 5 years (32,581,000 hooks) (Table 2). The total fishing effort (no. of sets) of the purse seine fishery was 2,697 sets in 2024, i.e., a 2% decrease over the effort in 2023 and a 19% increase over the average of 5 recent years (2,267 sets), respectively (Table 3). The reason for this significant decrease in catch of the purse seine fishery is that the main fishing area moved to the south of the equator in the EPO in 2024. The total catch of the longline fishery in the North Pacific Ocean was 23,866 t in 2024, a 30% increase compared to that in 2023 and a 17% increase compared to the average of the recent 5 years (17,396t) (Table 2 and Fig. 4). The total catch of the purse seine fishery was 27,870 t, which is a 72% decrease compared to that in 2023 and a 50% decrease compared to the 5-year average (55,620t) (Table 3 and Fig. 5).

As for the catch composition of the longline fishery in 2024, bigeye tuna, yellowfin tuna, blue marlin, and swordfish accounted for 44.1%, 45.2%, 4.2%, and 1.4% in the total catch, respectively (fig. 4). For the purse seine fishery, skipjack, yellowfin, and bigeye tunas accounted for 96.9%, 2.8%, and 0.3% in the total catch, respectively (Fig. 5).

2.2. PBF catch by coastal fisheries

2.2.1. Fleet structure

PBF is mainly caught by the offshore purse seine fishery targeting mackerels in the Korean waters. Due to the strategy set out by the government to control the fishing capacity of this fishery for the conservation and management of major commercial pelagic species, the number of vessels in the offshore purse seine fishery has decreased from 32 vessels in 2002 to 24 vessels in 2012, and the number has been quite stable thereafter. In 2024, there were 19 vessels which were authorized to catch PBF. The catch by the set net fishery, which are located along the coast of the East Sea, were getting higher (Table 4).

2.2.2. Fishing pattern

In 2024, most PBF catch were made by the offshore purse seine fishery around the eastern and southern part of Jeju Island from February to April, which shows a similar fishing pattern to the previous years (Fig. 6). Also, the catch of the set net fishery located along the north of 36°N in the East Sea has largely increased since 2019.

2.2.3. Annual catch and effort

The annual PBF catch by fishery are presented in Table 4 and Fig. 7. The total catch of PBF was the highest with 2,601 t in 2003 and has shown a decreasing trend with annual fluctuations

thereafter. In 2024, the PBF catch of the offshore purse seine fishery was 439 t, which accounted for 57.1% over the total catch. The PBF catch of the set net fishery was 307 t, which accounted for 39.9% over the total catch, and trawl fishery caught 23 t in 2024.

Fig. 8 shows the PBF catch by size (large and small) from 2002 to 2024 and the catch composition by fishery and size in 2024. Large PBF (30kg or greater) has been caught in the Korean waters since 2008, and the catch of large PBFs in 2016 was around 469 t, accounting for over 46% in the total catch. In 2024, the proportion of large PBFs in the total PBF catch was around 55%. Large PBFs were mostly caught by the offshore purse seine fishery operating around the southern waters of Jeju Island during February and April. A small quantity of large fish was caught by the set net fisheries as well.

The mean fork length of PBF was 144.6 cm in 2024, which is significantly lager than 82.6 cm in 2023 (Fig. 9).

3. DATA COLLECTION SYSTEM

3.1. Distant water fisheries

National Institute of Fisheries Science (NIFS) is responsible for the data collection and management of the Korean distant water fisheries. In accordance with data reporting and submission requirement by the RFMOs, necessary improvements have been made in data coverage, accuracy, and verification through cross-checking among relevant organizations and agencies. Since 1 September 2015, the *Distant Water Fisheries Development Act* has obliged fishers of distant water fisheries to report fishing information to NIFS in real time through the electronic reporting (ER) system. Continuous efforts are being made to review and update the system to include data reporting and collection requirements newly adopted by the tuna RFMOs.

3.2. Observer program

A scientific observer program for the Korean distant water fisheries started in 2002. A qualified person for the application for observers is a college graduate, majored in natural science, or fisheries high school graduate with a minimum 1-year experience on board and certificate of qualification to deck officer. Observer candidates who passed the paper review (including medical check-up) and oral interview must take a three-weeks training program. The observer training program includes basic seafaring safety, operation of navigation devices, biological information on target and non-target species, and data collection and reporting methods for fishing activities. The trainees must take two tests during the training, one designed to assess the trainee's proficiency in the technical terms for fisheries and biology, and the other to assess the trainee's species identification skills. Trainees must score a minimum 70/100 points for both tests with 100 % attendance to pass the course and be assigned to an on-board duty. Korea has a total of 61 scientific observers up to date.

3.3. PBF catch of coastal fisheries

To estimate the Korean historical PBF catch, we used the imported products information recorded by Japan in 1982-1999 and information on the export to Japanese markets provided by Korean Offshore Large Purse Seine Fisheries Cooperatives for 2000-2004. Since 2005, PBF catch information has been collected through the monthly sales check reported by Busan Cooperative Fish Market and National Federation of Fisheries Cooperative. All PBF catch information obtained through the sales check are monitored and managed by NIFS.

4. RESEARCH

4.1. PBF close-kin program

NIFS has been analysing PBF tissue samples since 2016, mostly from those caught by the offshore purse seine fishery for the close-kin program (Table 5). The samples were analyzed to develop genetic markers including Microsatellite (MS) markers (2018) and Single Nucleotide Polymorphism (SNP) markers (2019-2021). Because there is no standard for the PBF close-kin program, NIFS has been only collecting PBF tissue samples from 2022.

4.2. PBF eggs and larvae monitoring

NIFS has been collecting eggs and larvae of fisheries resources which occur, spawn, and/or transported in the Korean EEZ to study their bioecological characteristics. Due to the recent increase in the import of large PBF into the Korean EEZ since 2019, NIFS has conducted surveys of PBF eggs and larvae, covering the waters from the southern coast of Jeju Island to the northern west area of the East Sea, using its research vessels.

PBF eggs and larvae were collected in the East Sea in 2021 and 2022. However, the widespread presence of PBF eggs and larvae was confirmed in the southern waters around Jeju and the southern part of the East Sea in 2023. In 2024, the eggs and larvae were concentrated at depths less than 20m in the waters around Jeju (Fig. 10 and 11).

	GRT class by fishery											
Year	Longline						Purse seine					
	Total	0-50	51-200	201-500	500+	Total	0-500	501-1000	1001-1500	1500+		
2008	108	-	-	108	-	28	-	15	12	1		
2009	111	-	-	111	-	27	-	13	11	3		
2010	122	-	-	122	-	28	-	13	13	3		
2011	124	-	-	124	-	28	-	12	11	5		
2012	126	-	-	126	-	28	-	12	11	5		
2013	125	-	1	124	-	27	-	12	10	5		
2014	113	-	1	112	-	28	-	10	13	5		
2015	98	-	1	97	-	25	-	7	13	5		
2016	96	-	1	95	-	25	-	7	14	4		
2017	96	-	1	95	-	26	-	7	15	4		
2018	96	-	1	95	-	26	-	6	15	5		
2019	96	-	1	95	-	26	-	6	15	5		
2020	99	-	1	98	-	23	-	2	15	6		
2021	94	-	-	94	-	23	-	2	15	6		
2022	94	-	-	94	-	22	-	2	8	12		
2023	96	-	1	95	-	22	-	2	8	12		
2024	94		1	93	-	22	-	2	8	12		

Table 1. The number of active vessels in the Korean distant water tuna fisheries in the Pacific Ocean, 2008-2024

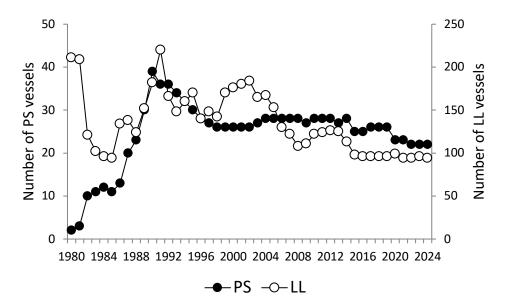
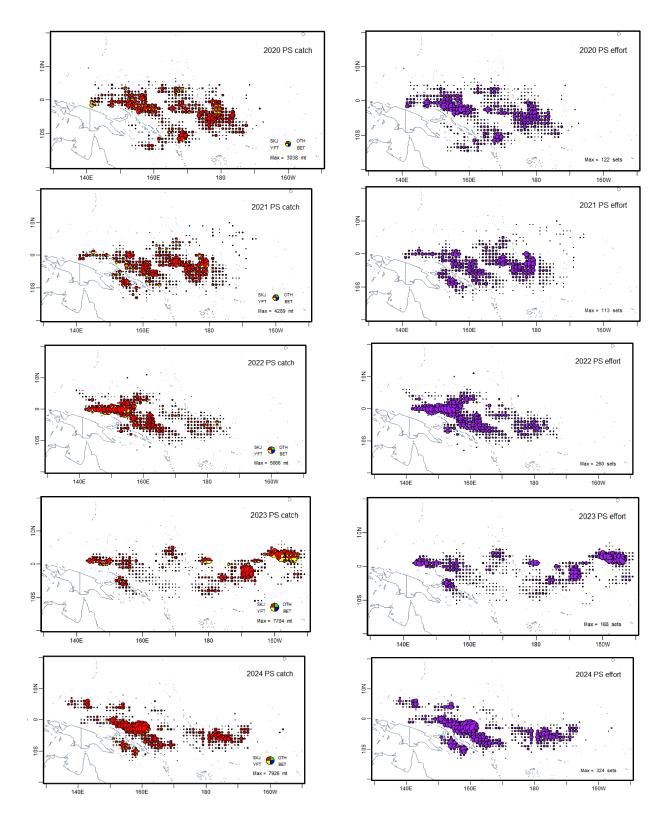
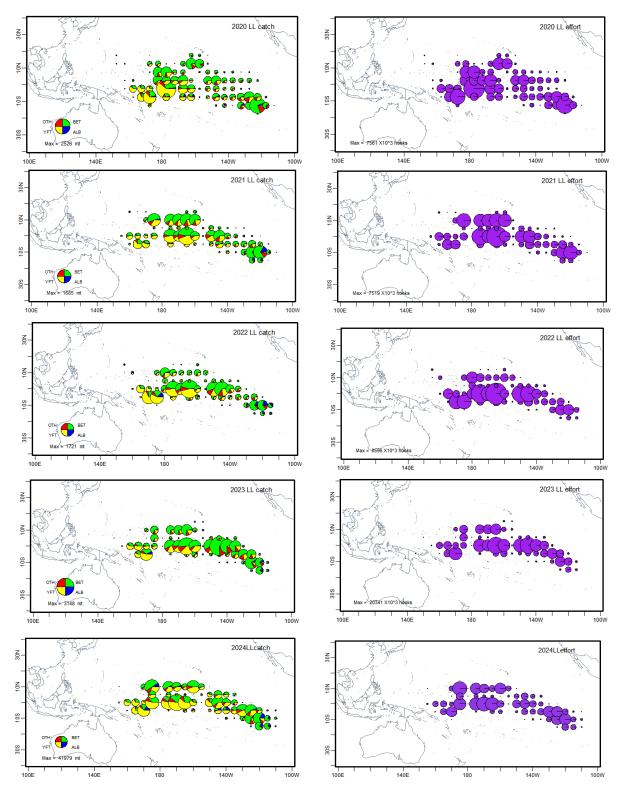




Fig. 1. Historical number of active fishing vessels of the Korean distant water tuna fisheries operated in the Pacific Ocean, 1980-2024.

Fig. 2. Distributions of catch (left) and effort (right) of the Korean distant water tuna purse seine fishery operated in the Pacific Ocean, 2020-2024.

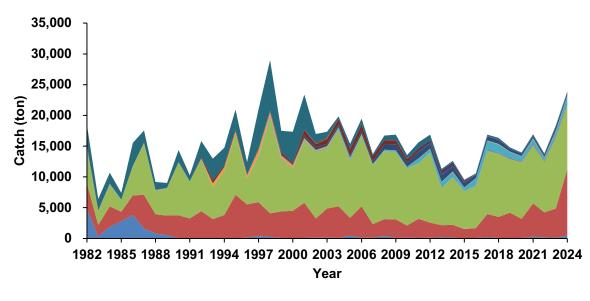


Fig. 3. Distributions of catch (left) and effort (right) of the Korean distant water tuna longline fishery operated in the Pacific Ocean, 2020-2024.

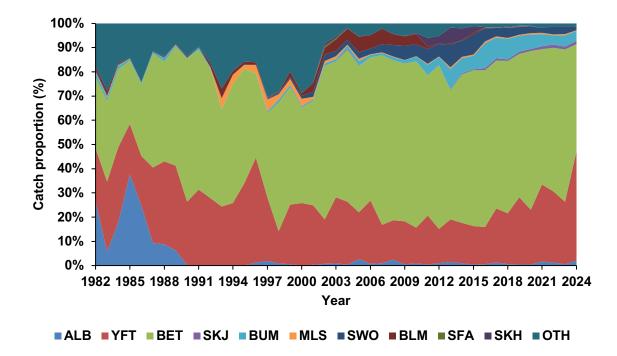

Year	Hooks (X1000)	ALB	YFT	BET	SKJ	BUM	MLS	SWO	BLM	SFA	SKH	OTH	Total
2002	16,478	112	3,137	10,786	0	152	188	439	479	123	185	1,400	17,001
2003	21,431	146	4,741	9,739	6	159	206	381	819	129	95	931	17,352
2004	18,746	78	5,144	12,453	101	227	75	410	919	1	8	404	19,819
2005	14,955	420	2,958	9,257	35	304	136	404	997	0	10	820	15,340
2006	18,259	135	5,096	11,494	0	217	56	465	1,063	0	0	941	19,468
2007	15,441	137	2,175	9,606	0	121	47	453	887	0	1	291	13,718
2008	16,466	400	2,730	11,075	0	220	30	795	748	0	4	741	16,742
2009	13,286	95	2,992	10,979	0	224	23	994	654	0	13	878	16,852
2010	14,729	107	2,011	9,303	0	257	18	663	570	0	69	532	13,531
2011	16,654	78	3,146	9,047	0	684	48	962	159	1	546	941	15,614
2012	15,553	157	2,398	11,385	8	587	34	856	57	1	499	876	16,859
2013	13,780	173	1,988	6,041	22	963	65	1,071	41	2	735	204	11,306
2014	11,646	116	2,102	7,735	50	801	82	829	31	3	610	256	13,208
2015	8,022	38	1,520	6,132	41	531	44	776	82	2	250	115	9,531
2016	26,241	56	1,626	6,871	73	1,116	61	582	30	11	9	158	10,593
2017	36,780	202	3,775	10,303	147	1,453	81	583	17	13	31	262	16,867
2018	38,352	101	3,426	10,286	99	1,373	70	664	35	10	37	230	16,332
2019	29,011	65	4,106	8,758	141	981	48	468	28	8	37	149	14,789
2020	30,428	56	3,169	9,157	102	848	74	392	18	4	10	141	13,971
2021	33,325	275	5,398	9,471	209	854	82	335	11	0	2	311	16,950
2022	28,652	173	4,056	8,217	178	520	66	447	3	8	1	162	13,832
2023	33,309	113	4,734	11,547	205	868	90	590	10	13	0	189	18,359
2024	37,191	474	10,797	10,526	341	997	63	337	0	25	0	306	23,866

Table 2. Fishing effort (1,000 hooks) and catch (t) of the Korean distant water tuna longline fishery in the North Pacific Ocean, 2002-2024

ALB : Albacore tuna, YFT : Yellowfin tuna, BET : Bigeye tuna, SKJ : Skipjack tuna, BUM : Blue marlin, MLS : Striped marlin, SWO : Swordfish, BLM : Black marlin, SFA : Indo-Pacific sailfish, SKH : Sharks, OTH : Others.

ALB YFT BET SKJ BUM MLS SWO BLM SFA SKH OTH

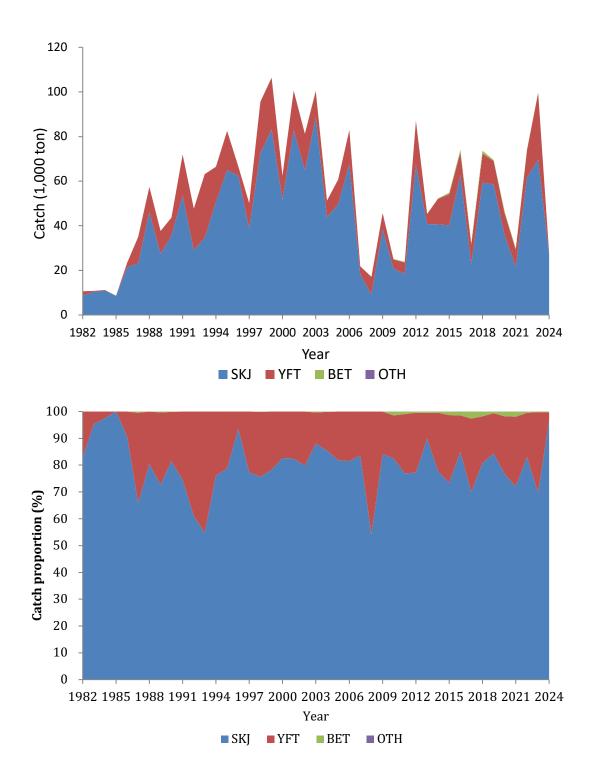


Fig. 4. Historical catches (top) and the catch proportion (bottom) by major species caught by the Korean distant water tuna longline fishery in the North Pacific Ocean, 1982-2024.

Vaar	Effort		Tatal			
Year	(sets)	SKJ	BET	YFT	OTH	– Total
2002	2,537	64,897	0	16,389	0	81,286
2003	2,876	88,654	319	11,714	0	100,687
2004	1,633	43,797	48	7,426	0	51,271
2005	1,035	49,724	0	11,027	0	60,751
2006	510	67,564	13	15,394	0	82,970
2007	543	18,270	0	3,585	0	21,855
2008	490	9,233	4	7,842	0	17,079
2009	1,237	38,436	15	7,232	0	45,683
2010	727	20,751	374	4,020	0	25,145
2011	770	18,331	216	5,256	0	23,803
2012	2,402	67,448	404	19,467	1	87,320
2013	1,644	40,809	232	4,344	0	45,386
2014	1,732	40,690	265	11,343	0	52,298
2015	1,296	40,195	739	13,859	0	54,793
2016	2,379	62,849	1,025	10,088	31	73,993
2017	863	22,672	858	8,829	2	32,361
2018	2,141	59,479	1,327	12,838	1	73,645
2019	1,507	58,574	398	10,425	1	69,397
2020	1,145	35,698	847	9,959	<1	46,504
2021	1,118	21,497	573	7,742	0	29,812
2022	3,600	61,619	381	12,160	0	74,161
2023	2,774	69,543	211	30,000	0	99,754
2024	2,697	27,003	77	790	0	27,870

Table 3. Fishing effort (no. of sets) and catch (t) of the Korean distant water tuna purse seine fishery in the North Pacific Ocean, 2002-2024

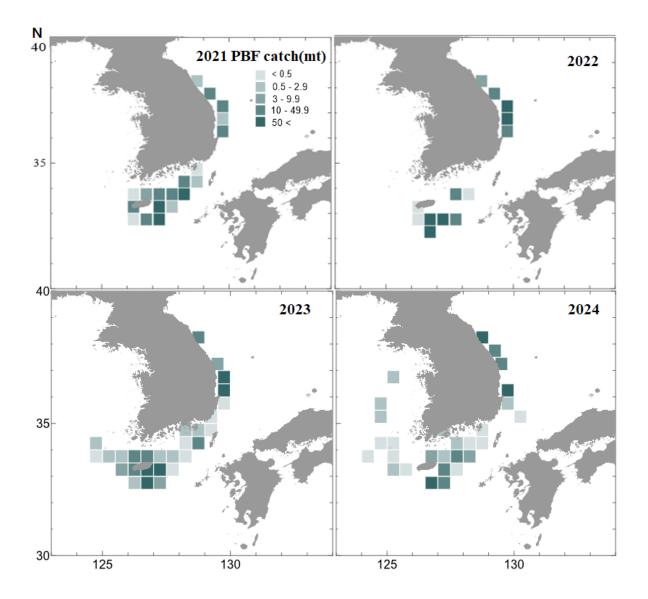
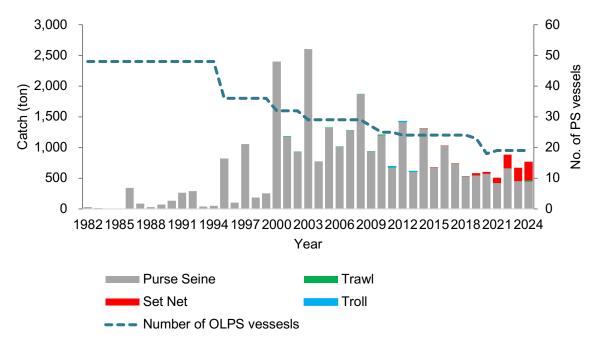
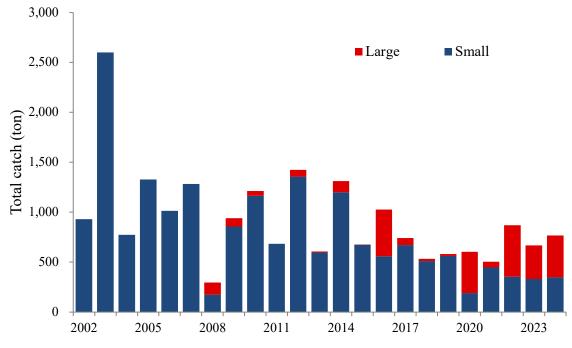
SKJ : Skipjack tuna, BET : Bigeye tuna, YFT : Yellowfin tuna, OTH : Others.

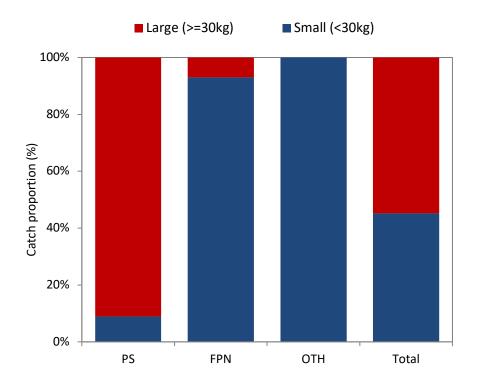
Fig. 5. Historical catches (top) and the catch proportion (bottom) by major species caught by the Korean distant water tuna purse seine fishery in the North Pacific Ocean, 1982-2024.

Year	No of OLPS	Catch (t)							
i cui	vessels	OLPS*	Set net	Troll	Trawl	Total			
2002	32	932	0	0	1	933			
2003	29	2,601	0	0	0	2,601			
2004	29	773	0	0	0	773			
2005	29	1,318	0	0	9	1,327			
2006	29	1,012	0	0	3	1,015			
2007	29	1,281	0	0	4	1,285			
2008	29	1,866	0	0	10	1,876			
2009	27	936	0	0	4	940			
2010	25	1,196	0	0	16	1,212			
2011	25	670	0	0	14	685			
2012	24	1,421	0	1	2	1,424			
2013	24	604	1	0	0	605			
2014	24	1,305	6	0	0	1,311			
2015	24	676	1	0	0	677			
2016	24	1,024	3	0	2	1,029			
2017	24	734	3	0	6	743			
2018	24	523	7	0	5	535			
2019	23	542	36	0	3	581			
2020	18	567	35	0	3	605			
2021	19	422	84	0	< 0.5	509			
2022	19	654	221	0	6.4	881			
2023	19	448	215	0	5	668			
2024	19	439	307	0	23	768			

Table 4. Annual catch (t) of Pacific bluefin tuna by fishery, and the number of active vessels of the offshore large purse seine fishery in the Korean waters, 2002-2024

*OLPS: Offshore large purse seine fishery


Fig. 6. Catch distribution of Pacific bluefin tuna caught by the Korean coastal and offshore fisheries, 2021-2024.

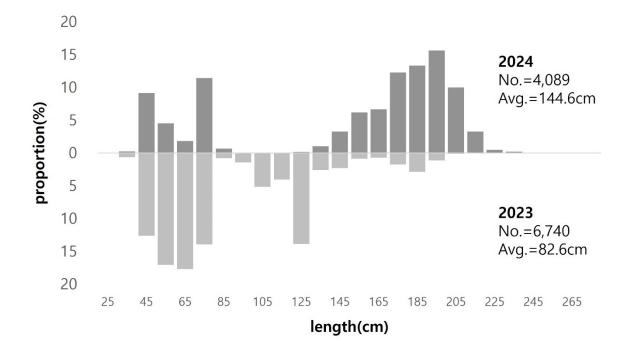

Fig. 7. Historical catch of Pacific bluefin tuna by fishery, and the number of active vessels of the offshore large purse seine fishery in the Korean waters, 1982-2024.

Fig. 8. Catch of Pacific bluefin tuna by size from 2002 to 2024 (top) and the catch proportion by fishery and size in 2024 (bottom).

Fig. 9. Length frequency of Pacific bluefin tuna caught by the Korean offshore large purse seine fishery in 2022 and 2024.

Table 5. Summary of the number of samples and range of fork length (FL) by year for the close-kin mark-recapture

Year	Number of samples	Range of FL (cm)				
2016	1,045	32.2-179.0				
2017	348	35.5-89.5				
2018	249	36.0-162.8				
2019	313	33.9-109.6				
2020	182	35.4-135.5				
2021	410	52.0-123.8				
2022	361	30.9-77.1				
2023	608	38.3-79.3				
2024	6,993	18.9-261				

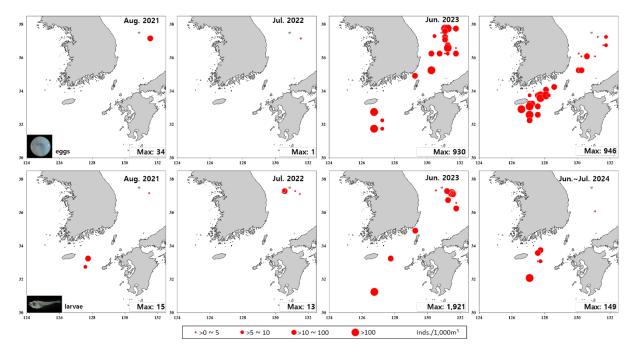
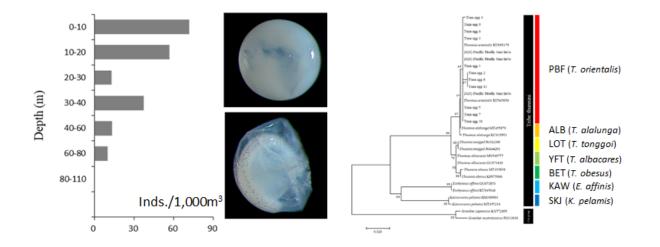



Fig. 10. The annual distribution of Pacific bluefin tuna eggs and larvae density in the Korean waters

Fig. 11. Density distribution by depth and molecular phylogenetic tree based on DNA analysis of Pacific bluefin tuna collected from the southern waters of Jeju Island.