Annex 8

REPORT OF THE BILLFISH WORKING GROUP WORKSHOP

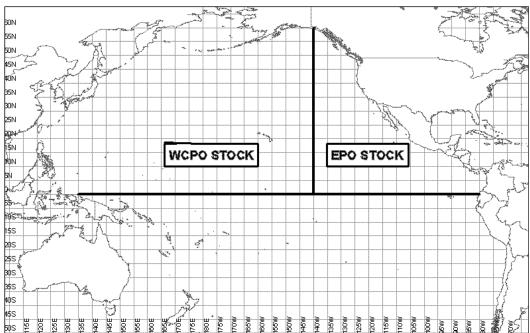
International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean

12-13 July 2010 Victoria, British Columbia, Canada

1.0 INTRODUCTION

An intercessional workshop of the Billfish Working Group (BILLWG) of the International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC) was convened in Victoria, British Columbia, Canada from 12-13 July 2010. The goals of this workshop were to 1) finalize advice on potential billfish biological reference points, 2) review the spatial extent and disposition of fisheries catching North Pacific striped marlin within areas (Western Central Pacific Ocean (WCPO) and Eastern Pacific Ocean (EPO)) delineated at the April 2010 BILLWG Workshop, 3) review and modify (if necessary) current conservation advice, and 4) review and discuss the World Blue Marlin Symposium proposal.

Gerard DiNardo, Chairman of the BILLWG, welcomed participants from Japan, Korea, and the United States of America (USA) (Attachment 1). Gerard DiNardo, Chair of the ISC BILLWG, provided the welcoming remarks. Rapporteuring duties were assigned to Dean Courtney, John Hyde, Jae-Bong Lee, Kevin Piner, Darryl Tagami, Kotaro Yokawa, and Lyn Wagatsuma. Wagatsuma served as the lead rapporteur with overall responsibility of assembling the workshop report. Working papers were distributed and numbered (Attachment 2), and the meeting agenda adopted (Attachment 3). All authors who submitted a working paper agreed to have their papers posted on the ISC website where they will be available to the public.


2.0 APRIL 2010 ISC BILLWG WORKSHOP SUMMARY

Gerard DiNardo provided a summary of the intercessional workshop of the ISC BILLWG that was convened in Hakodate, Hokkaido, Japan 15-22 April 2010. The goals of this workshop were to 1) review the status of the North Pacific swordfish assessment using SS3 and Bayesian production models, 2) discuss progress of the blue marlin symposium, 3) delineate striped marlin stock boundaries, and 4) identify potential billfish biological reference points (BRP).

Conclusions from this meeting included:

• The North Pacific striped marlin stock assessment, scheduled to be completed in 2011, would be based on a two stock scenario hypothesis in the North Pacific Ocean. The two stocks are defined by the following boundaries (Figure 1):

- o WCPO stock- West of 140°W and north of the equator
- EPO stock- East of 140°W and north of the equator
- The WG identified 17 potential BRPs for inclusion in the Biological Reference Point Attributes table; these BRPs are commonly used for stock assessment of highly migratory species as discussed during the meeting (Table 2). It was agreed that the each potential BRP should be characterized using the following attributes so that the Northern Committee can understand the implications of each BRP easily: the definition and management purpose, model structure, data needs, limit or target reference point, type of overfishing, pros/cons and special comments (Table 1). It was agreed that the table will be filled out, reviewed and finalized at the July 2010 BILLWG meeting.
- The North Pacific swordfish Bayesian Surplus Production (BSP) model and Stock Synthesis 3 (SS3) model were updated. Results from the BSP model were similar to the 2009 assessment. Conservation advice will remain unchanged unless clarification is required. The SS3 results in Region 2 do not provide reliable results due to limited data on size at catch.

Figure 1. Stock boundary delineated for the 2011 stock assessment of North Pacific striped marlin.

Table 1. Draft description of biological reference points including definition and management purpose, attributes, and special comments for two example BRPs for exploitation rates.

Biological Reference Point	Definition and Management Purpose	Model Structure	Data Needs	Limit or Target Reference Point	Model Includes Population Dynamics for Recruitment Overfishing	Pros/Cons and Special Comments
FMSY	Fishing mortality that maximizes yield under existing environmental conditions and fishery selectivity pattern	Age-structured or size- structured model for one or two sexes	Fishery catch, fishery catch per unit effort or other relative abundance indices, life history parameters (including natural mortality at age, size at age, weight- length relationships, fishery selectivity pattern, sex ratio in catch if two-sex model)	Has been used as limit and target reference point in various RFMOs	Yes	FMSY is difficult to estimate if stock- recruitment relationship is not known. This BRP may be easy to implement but also entails high risk of recruitment overfishing
FMAX	Fishing mortality that maximizes yield per recruit	Age-structured yield per recruit model	Life history parameters	Has been used as a limit and a target BRP	No	FMAX may be appropriate if recruitment is relatively constant over a range of fishing effort. This BRP may be very risky for some rapidly-growing species because it may cause recruitment overfishing

Table 2. Potential biological reference points for billfish.

Biological Reference Point
FMSY
FMAX
F _{0.1}
F _{MED}
Fτ
F _{SPR}
$F_{SSB-ATHL}$
F _{lim}
F _{pa}
F _{loss}
B _{MSY}
B _{MAX}
B _{0.1}
$B_{X\%}$ (depletion)
B _{lim}
B _{pa}
B _{loss}

2.1 Status of Work Assignments

At the April 2010 workshop, the BILLWG was tasked with a number of assignments that included:

- At the July 2010 BILLWG workshop, Japan, Chinese Taipei, Korea, China, Mexico, USA, and IATTC will present data on the spatial extent and disposition of fisheries catching North Pacific striped marlin within the stock boundaries delineated at April 2010 BILLWG workshop.
- BRP table (Table 1) will be filled out, reviewed and finalized at the next BILLWG meeting in July.
- By the scheduled January 2011 BILLWG workshop, submit stock specific Category I, II, and III North Pacific striped marlin data for review and inclusion in the forthcoming striped marlin stock assessment.

At the April 2010 ISC BILLWG Workshop, the ISC BILLWG Chairman was also tasked with a number of assignments that include:

- Present results from the updated North Pacific swordfish assessment at the 10th ISC Plenary.
- Construct draft outline of proposed objectives and scope for World Blue Marlin Symposium by July 2010 ISC BILLWG workshop.

The WG Chairman reported that not all assignments due at the July 2010 BILLWG workshop were completed. The spatial extent and disposition of fisheries catching striped marlin in the boundary areas was not submitted by all countries. This will impact the North Pacific striped marlin assessment schedule and we look forward to presentations on this topic at the next workshop. The WG Chairman also reminded BILLWG members that some assignments, specifically the submission of stock specific North Pacific striped marlin Category I, II, and II data, are on-going.

Discussion

It was clarified that the stock specific North Pacific striped marlin data should be submitted directly to the BILLWG Chair. The appropriate data will then be passed on to the ISC Database Administrator. It was also clarified that in addition to submitting the Category I, II, and III data, BILLWG members should also submit CPUE time series for use in the stock assessment.

3.0 **BIOLOGICAL REFERENCE POINTS**

3.1 Age-Based Analyses of Potential Biological Reference Points for the Western and Central North Pacific Swordfish (*Xiphias gladius*) Stock presented by Jon Brodziak (ISC/10/BILLWG-2/02)

Age-based demographic analyses were used to determine a suite of candidate biological reference points for the Western and Central North Pacific swordfish stock for consideration by the ISC Billfish Working Group. Life history data and results from the recent age-structured stock assessment modeling of this stock were used to compute the fishing mortality reference points F_{MSY}, F_{MAX}, F_{0.1}, F_{MED}, and F_{SPR}. The same information was used to compute the biomass reference points B_{MSY}, B_{MAX}, B_{0.1}, B_{MED}, and B_{SPR}. The percentage of maximum yield and spawning biomass per recruit were summarized to compare the relative yield and stock conservation benefits of the various fishing mortality reference points. Similarly, the ratios of reference biomass, recruitment, and yield to the values at MSY were also summarized to compare the relative stock conservation and yield benefits of the various biomass reference points.

Discussion

It was noted that several choices were made that may affect the resulting BRP estimates. For the example, the choice of years (1994-2006) included in the estimation of average selectivity and the method used to estimate catch weighted quarterly average selectivity. The rationale and/or methodology for these choices should be clarified. It was also noted that the age of the plus group may affect the resulting BRP estimates, especially if fishing mortality is high relative to natural mortality, and that the explicit relationship between the age plus group and BRPs estimated within Stock Synthesis are not well documented. It was noted that the NOAA Fisheries Toolbox (NFT) YPR program was chosen to estimate biological reference points for the working paper because explicit equations for each estimated reference point are available for the NFT YPR program (provided in the working paper).

It was noted that the BRP F_{crash} was in excess of F=3 because of the stock recruitment steepness assumption of h=0.9.

An observation was made, that based on the current swordfish assessment, the estimate of MSY from SS3 may be too low because fishing pressure is low.

3.2 Production model analyses of maximum sustainable yield-based reference points for the North Pacific swordfish stocks presented by Jon Brodziak (ISC/10/BILLWG-2/03)

Production model analyses of maximum sustainable yield-based reference points were conducted in 2009 and 2010 to assess the Western and Central (WCPO) and the Eastern Pacific (EPO) swordfish stocks in the North Pacific. Estimates of maximum sustainable yield-based reference point from the Bayesian surplus production models of the two swordfish stocks and their variability were summarized for consideration by the ISC BILLWG. The results for the WCPO stock were taken from the 2009 stock assessment. Results for the EPO stock were taken from the 2010 stock assessment update which included an updated time series of swordfish catches in the Eastern Pacific Ocean.

Discussion

It was noted that the estimate of B_{MSY} from the production model differed from the stock synthesis model, and that the difference in B_{MSY} resulted primarily from differences in model structure and the overall lack of contrast in the North Pacific swordfish fisheries CPUE data as discussed at the last working group meeting. In addition, differences in how the yield curve is estimated within age-structured YPR relative to the production model may also affect the resulting estimate of B_{MSY} .

It was noted that within the production model, the estimate of annual harvest rate to produce MSY (H_{MSY}) was higher in the WCPO (0.25) than in the EPO (0.15). There was a discussion about whether or not this difference was real given the uncertainty in H_{MSY} especially within the EPO. Some plausible differences in swordfish habitat between the WCPO and EPO were discussed based on oceanographic differences. It was also discussed that uncertainty about the exact location of the southern boundary for the EPO swordfish stock may also have contributed to the uncertainty of estimated BRPs in the EPO.

3.3 Biological Reference Point Table presented by Kevin Piner and Kotaro Yokawa (ISC/10/BILLWG-2/01)

The completed Biological Reference Point Table that was assigned to be completed at the April 2010 ISC BILLWG workshop was presented for review and finalization. The table includes 17 BRPs that are commonly used for stock assessment of highly migratory species, and were characterized using attributes including: the definition and management purpose, model structure, data needs, limit or target reference point, type of overfishing, pros/cons, and special comments.

Discussion

The BILLWG reviewed the BRP Table and made the following revisions:

- $F = F_{crash}$
- $F_{SSB} = F_{SSB-ATHL}$
- $F_{X\%SPR} = F_{SPR}$

Merits of each BRP were discussed and included in the table (Table 3).

Table 3. Billfish Biological Reference Point Table	;
--	---

Biological	Definition and Management	Model	Data Needs ²	Limit or	Type of	Pros/Cons and Special Comments
Reference	Purpose	Structure ¹		Target	overfishing	
Point				Reference		
				Point		
			F based Refere	nce Point	S	
FMSY	Fishing mortality that maximizes yield under existing environmental conditions.	Age- structured or size- structured model for one or two sexes	Fishery catch, fishery catch per unit effort or other relative abundance indices, life history parameters	Has been used as limit and target reference point in various RFMOs	Recruitment and growth	FMSY is difficult to estimate if stock- recruitment relationship is not known. This BRP may be easy to implement but also entails high risk of recruitment overfishing. Can be estimated with biomass dynamics modeling.
Fmax	Fishing mortality that maximizes yield per recruit under existing environmental conditions	Age- structured yield per recruit model	Life history parameters	Has been used as a limit and a target BRP	Growth	F _{MAX} may be appropriate if recruitment is relatively constant over a range of fishing effort. This BRP may be very risky for some rapidly-growing species because it may cause recruitment overfishing
F _{0.1}	The fishing mortality rate corresponding to 10% of the slope of the Y/R curve at the origin.	Age- structured yield per recruit model	Life history parameters	Has been used as a limit and a target BRP	Growth	A more precautionary exploitation level relative to F _{MAX} . Often thought to reduce potential recruitment overfishing without a substantial loss in yield.
F _{MED}	The fishing mortality rate to produce replacement recruitment often taken to the median of the R/S distribution. Fishing mortality to maintain recruitment at replacement level observed during specified period.	Estimates of Spawners and Recruits	Estimates of Spawners and Recruits. Typically drawn from an age structured assessment model.	Target or Limit	Recruitment	³ Value dependent on the range of SSB used in the calculations. Not informative if estimates of recruitment taken from a narrow range of spawning biomass. No assumptions about recruitment process. Risky with the specification of BH h=1.0.
F	Fishing mortality rate corresponding to the slope of the S/R function at the origin. Theoretical upper	A S/R curve and a relationship of SSB/R	Estimates of Spawner and Recruits. Typically drawn from an age	Limit	Recruitment	Fishing at F leads to extinction. Can only be interpreted as a Limit. Upper limit. Does not account for dispensatory effects.

	bound of sustainable rates.	and F	structured assessment model.			
F _{X%SPR}	Fishing mortality rate that produces X% of the unfished spawning potential under equilibrium conditions. Sometimes used for a proxy for other BRP's.	Age- structured Spawner per recruit model	Life history parameters	Has been used as a limit and a target BRP	Recruitment	Although a recruitment based BRP, it is a per-recruit calculation and thus does not depend on estimating the S/R relation. The appropriate level (X%) can be difficult to determine.
F _{SSB}	Fishing mortality rate that produces no more than a specified probability of SSB falling below a defined level of SSB during a given projection period.	Age or length structured assessment	Fishery catch, fishery catch per unit effort or other relative abundance indices. May use additional data such as, life history parameters, biological samples etc.	Target or Limit	Recruitment	Assumes that specified level of spawning biomass is sufficient to insure recruitment success. Flexible which is both a pro and a con. Requires lots of specifications.
F _{lim}	Fishing mortality if maintained will drive the stock to the biomass limit (B _{lim}).	The same as typically associated with an age structured model.	Estimates of spawners and recruits.	Limit	Recruitment	Specified B _{lim} .
F _{pa}	Fishing mortality if maintained drives stock to precautionary biomass limit (B _{pa})	The same as typically associated with an age structured model.	Estimates of spawners and recruits. Need information on accuracy of assessment and risk to be accepted.	Limit	Recruitment	Specified B _{pa} . More precautionary version of F _{lim} .
F _{loss}	Fishing mortality if maintained drives a stock to the lowest observed	Age- structured or size-	Fishery catch, fishery catch per unit effort or other relative	Limit	Recruitment.	Usually used as a proxy of F _{lim} when data is limited.

	spawning stock.	structured model for one or two sexes.	abundance indices, life history parameters.			
			mass based ref	erence po) Dints	
B _{MSY}	The average biomass resulting from fishing at F_{MSY}	Age- structured or size- structured model for one or two sexes.	Fishery catch, fishery catch per unit effort or other relative abundance indices, life history parameters.	Has been used as limit and target reference point in various RFMOs	Recruitment	B _{MSY} is difficult to estimate if stock- recruitment relationship is not known. Can be estimated with biomass dynamics modeling. This BRP may be easy to implement but also entails high risk of recruitment overfishing
B _{MAX}	The average biomass resulting from a fishing mortality that maximizes yield per recruit	Age- structured yield per recruit model	Life history parameters	Has been used as a limit and a target BRP	⁴ Associated value	B _{MAX} may be appropriate if recruitment is relatively constant over a range of fishing effort. Seldom used for management but included because F _{MAX} is defined.
B _{0.1}	The average biomass level associated with fishing at F _{0.1}	Age- structured or size- structured model for one or two sexes	Fishery catch, fishery catch per unit effort or other relative abundance indices, life history parameters	Has been used as limit and target reference	⁴ Associated value	Seldom used for management but included because F _{0.1} is defined.
$B_{X\%}$ (depletion)	A biomass level that is some specified fraction of the estimated unfished biomass level	Biomass dynamic or age structured model.	Fishery catch, fishery catch per unit effort or other relative abundance indices.	Has been used as limit and target reference	Recruitment	Must use additional analysis to determine the appropriate depletion level. Usually a proxy for BMSY. Depletion is typically calculated relative to unfished level, however substantial uncertainty exists in the calculation of unfished state.
B _{lim}	Set on basis of historical data. Biomass below B _{lim} entails high risk that recruitment might be	The same as typically drawn from an age structured model.	Estimates of spawners and recruits.	Limit	Recruitment	Needs long time series of data (multiple generations). Easy to understand and based on observed values.

	reduced.					
B _{pa}	Precautionary buffer against natural variability and uncertainty associated with B _{lim} . (Note that B _{pa} >B _{lim})	The same as typically drawn from an age structured model.	Estimates of spawners and recruits. Need information on accuracy of assessment and risk to be accepted.	Limit	Recruitment	Needs long time series of data (multiple generations). Easy to understand and based on observed values.
Bioss	The lowest observed spawning biomass.	Age structured model.	Fishery catch, fishery catch per unit effort or other relative abundance indices, life history parameters.	Limit	Recruitment.	Used as a proxy for B _{lim} . Needs long time series of data (multiple generations). Easy to understand and based on observed values.

¹Model structure applies to calculation of reference point only. Additional model complexity may be needed to calculated observed metric (F, SSB etc) for comparison.

²Data needs applies to calculation of reference point only. Additional data may be needed to calculated observed metric (F, SSB etc) for comparison.

 3 There was no consensus that F_{MED} was risky when steepness was specified as 1.0.

⁴ Associated values are often reported along with their F complement, but may not be used for management.

4.0 BILLFISH CONSERVATION ADVICE

The BILLWG reviewed its previous conservation advice with the objectives of clarifying the statements where necessary. Current conservation advice for the two species follows:

<u>North Pacific striped marlin</u>: "While further guidance from the management authority is necessary, including guidance of reference points and the desirable degree of reduction, the fishing mortality rate of striped marlin (which can be converted into effort or catch in management) should be reduced from the current level (2003 or before), taking into consideration various factors associated with this species and its fishery. Until appropriate measures in this regard are taken, the fishing mortality rate should not be increased"

<u>North Pacific swordfish</u>: "the WCPO and EPO stocks of swordfish are healthy and well above the level required to sustain recent catches"

Discussion

Regarding North Pacific striped marlin, the WG members noted that parts of the statement were ambiguous; however no consensus on clarification of the statement was reached.

Regarding North Pacific swordfish, clarification was sought to define the terms WCPO and EPO, but no consensus was reached. It was noted that these terms were defined in the text describing North Pacific swordfish conservation advice in the previous ISC Plenary report (ISC/09/Plenary/Rep).

5.0 NORTH PACIFIC STRIPED MARLIN REGIONALIZED FISHERIES

5.1 Preliminary analysis of area boundary to standardize CPUE of striped marlin in the North Pacific Ocean presented by Kotaro Yokawa (ISC/10/BILLWG-2/04)

Potential area boundaries in the area west of 140°W of the North Pacific Ocean to standardize CPUE of striped marlin was provided. Spatial patterns were clarified using the delta type, twostep method describing abundance index. Results from the two models used in delta type, twostep method helped to identify optimal area boundaries for latitude and longitude. Summing of AIC for both steps led to the selection of the model in the second step to determine optimal boundaries. It was concluded that choosing the appropriate time series of CPUE is important when using GLM to standardize CPUE or when applying another model like the statHBS. Due to the large effect of gear configuration on CPUE, the method for CPUE standardization of striped marlin should be revisited in the next stock assessment.

Discussion

Since the primary author, Minoru Kanaiwa, was not present to answer questions and to fully explain the model and methodology, it was agreed that full review and discussion on this paper would be postponed until the next ISC BILLWG meeting. Co-author, Kotaro Yokawa, pointed out the difficulties in the estimation of gear configuration within the statistical approach due to

the skewed distribution pattern of data for Japanese offshore and distant-water longliners. This problem should be revisited during the next BILLWG workshop.

5.2 The U.S. Longline Fishery for Striped Marlin in the North Pacific Ocean presented by Gerard DiNardo (ISC/10/BILLWG-2/05)

This report summarizes catch trends for striped marlin caught by the U.S. Hawaii-based longline fishery in the North Pacific Ocean (NPO). Although striped marlin are targeted and taken incidentally by a suite of commercial and recreational fisheries in the North Pacific Ocean, only the U.S. longline fishery is discussed here. To facilitate completion of the upcoming striped marlin stock assessment, which assumes two NPO stocks, the U.S. longline time series for catch has been separated into WCPO and EPO stocks. Trends of catch, number of sets, and number of hooks were presented from 1991-2009. Striped marlin catch was also plotted by area for 2009.

Discussion

It was pointed out that there has been an increasing trend for number of sets and number of hooks since 2001, and that 95% of the effort was in the WCPO. It was also noted that catch varied substantially but was relatively stable from 1991-2009 and nearly all of the catch in 2009 was in the WCPO.

It was suggested that the following summaries be added to the next catch and effort update for striped marlin in the U.S. longline fishery in the NPO:

- Number of vessels by year
- Number of sets and hooks for both shallow and deep sets by year
- Market value by year
- Number of hooks per basket by year
- 5.3 Available data of striped marlin and swordfish by the Japanese fishery in the North Pacific presented by Kotaro Yokawa (ISC/10/BILLWG-2/06)

This report provides an update of available data for striped marlin by Japanese fisheries, including catch (mt), total hooks, and size data within two-stock structure zones. Catch was estimated separately by gear from Japanese year books and log books, in the WCPO and EPO between 1951 and 2008. Total number of hooks by Japanese offshore longline was estimated in each zone during the same period, as was the number of size samples. Additionally, this study provided the updated catch amount of swordfish in the north Pacific by gear and stock zone. The estimated catch and the total number of hooks of striped marlin in recent years decreased significantly in the two zones, compared to those before 1990. Due to the recent decreasing trend of catch and effort data in the Japanese offshore and distant-water longline fisheries, care should be exercised when using these striped marlin data for stock assessment, especially in the northeastern Pacific Ocean.

Discussion

It was pointed out that the only Japanese fishery in the EPO area, as defined by the BILLWG for the upcoming striped marlin stock assessment, is the distant-water longline fishery. Swordfish catches were also presented by gear from 1951-2008 for both the one stock and two stock scenarios. It was also noted that the number of available size data in the north Pacific decreased substantially since 2004. This may be due to new sampling methods implemented at that time and problems with the choice of fork length measured. Efforts are being made to correct some of these errors which will increase the number of available size data from 2004-2008. The number of sets conducted in the EPO area substantially decreased in recent years. Most of the observed reduction occurred off Mexico, which is the main fishing ground for striped marlin in the EPO. This could have an effect on the representativeness of CPUE obtained from Japanese longline data.

6.0 WORLD BLUE MARLIN SYMPOSIUM

Gerard DiNardo reviewed the rationale, objectives, possible themes, possible sponsors, steering committee members, and timeline of the World Blue Marlin Symposium tentatively scheduled for May 2011.

Discussion

There was discussion on whether holding a World Blue Marlin Symposium (WBMS) is a necessary condition for the completion of a blue marlin stock assessment and it was noted that the assessment would still proceed whether a WBMS was held or not. The BILLWG agreed that although a WBMS would be beneficial, it would not go forward with a WBMS in 2011. It was suggested that input (data) and support from other organizations (i.e. SPC) could be attained by conducting smaller workshops, and not a formal symposium. It was also suggested that the WBMS could be held at a later date, following the completion of a blue marlin stock assessment, possibly affiliated with the International Billfish Symposium.

7.0 OTHER BUSINESS

- 7.1 RFMO Plans and Upcoming Meetings
- 7.1.1 IATTC North Pacific striped marlin stock assessment

Gerard DiNardo notified the BILLWG on the IATTC's plan to complete a North Pacific striped marlin stock assessment by the end of July 2010. Further detail is yet unknown. The BILLWG Chair is assigned to look into this, and report back to the BILLWG.

Discussion

Concern was expressed about having two separate North Pacific striped marlin stock assessments. The BILLWG agreed to review the results of the IATTC North Pacific striped marlin stock assessment and decide how to proceed with its stock assessment from there.

7.1.2 International Symposium on Tuna and Billfish Tagging

Gerard DiNardo discussed the upcoming International Symposium on Tuna and Billfish Tagging – Challenges for Tuna and Billfish Tagging Technology and Data Utilization. This symposium is scheduled for 7-12 November 2010 in Taitung, Taiwan. While this is not an "official" ISC symposium, it was noted that some BILLWG members are involved in the planning of this symposium.

Discussion

The BILLWG endorsed the symposium and encourages members to attend. The BILLWG would also like to have a presentation of the results of the symposium at a future BILLWG workshop. Since many billfish stock structure questions still exist, the BILLWG Chairman should consider making a presentation at this symposium on the need for a coordinated billfish tagging program in the Pacific Ocean.

7.2 Work Assignments

The BILLWG were given a number of assignments:

- Submit finalized working papers presented at this meeting by Friday, 13 August 2010.
- All member countries will submit stock specific Category I, II, and III North Pacific striped marlin data as well as CPUE time series for use in the stock assessment by 1 January 2011. All data should be separated into fisheries within the stock boundaries delineated by the BILLWG.
- All member countries will submit Category I data for all billfish (blue marlin, swordfish, etc.) species by 1 January 2011.

The BILLWG Chairman was tasked with a number of assignments:

- Contact WCPFC to request billfish data from non-ISC member countries.
- Determine status of the ISC Biological Sampling proposal and report to BILLWG at January 2011 BILLWG workshop. The Chairman should also seek clarification on status of the Biological Sampling proposal at the 10th ISC Plenary.
- Request information from IATTC regarding North Pacific striped marlin stock assessment and report to BILLWG.

7.3 Future Meetings

The next intercessional BILLWG workshop is scheduled for 19-27 January 2011 in Hawaii, USA. The goals of this workshop will be to review and adopt stock specific Category I, II, and III North Pacific striped marlin data as well as CPUE time series for use in the stock assessment.

All data should be separated into fisheries within the stock boundaries delineated by the BILLWG.

The following intercessional BILLWG workshop is scheduled for 19-27 May 2011. The location is not yet determined, but Japan provisionally offered to host this meeting. The goal of this meeting will be to finalize the North Pacific striped marlin stock assessment for presentation at the 11th ISC Plenary meeting.

8.0 ADJOURNMENT

The ISC BILLWG intercessional workshop was adjourned at 3:37pm on 13 July 2010. The Chairman expressed his appreciation to all participants for their contributions and cooperation in completing a successful meeting.

		.011.	1101			umai	les m	· ().					0	nono Toir -	1					Caste		Kores		Marte		1	11-	ited States		
					Japan								Chi	nese Taipe						Costa Rica ¹		Korea		Mexico	1		Un	ited States		
		Distant-														oastal					1					1				Grand
	w	ater and			Small	Large			Distant-	High-seas					G	illnet &					н	ligh-seas								Total
		offshore	Coastal	Other	Mesh	Mesh	2		water	Drift							Coastal Coasta					Drift								
		ongline 2,494	Longline -	Longline 673	Gillnet	Gillnet 0	Other ² 1,281	Total 4,447	Longline	Gillnet	Longline	Gillnet	Others	Harpoon S	Setnet	net l	ongline others	Other	Total	Sport	Longline	Gillnet	Total	Longline Sport ¹	Total	Longline	Troll	Handline Sport ¹	Total	4,447
-	952	2,901	-	722	-	0	1,564	5,187											-		-		0		0			23	23	5,210
	953 954	2,138 3.068	-	47 52	-	0	954 1,088	3,139 4,207											-		-		0		0			5 16	5 16	3,144 4,223
		3,082	-	52 28	-	0	1,000	4,207 4,148											-		-		0		0			5	5	4,223 4,153
		3,729	-	59	-	0	1,996	5,785											-		-		0		0			34	34	5,819
		3,189 4,106	-	119 277	-	0 3	2,459 2,914	5,767 7,300			543							387	- 930		-		0 0		0			42 59	42 59	5,809 8,289
	959	4,152	-	156	-	2	3,191	7,501			391							354	745		-		0		0			65	65	8,311
		3,862 4,420	-	101 169	-	4 2	1,937 1,797	5,904 6,388			398 306							350 342	748 648		-		0 0		0 0			30 24	30 24	6,682 7,060
		5,739	-	110	-	8	1,912	7,769			332							211	543		-		0		0			5	5	8,317
		6,135	-	62	-	17	1,910	8,124			560							199	759		-		0		0			68	68	8,951
		14,304 11,602	-	42 19	-	2 1	2,344 2,794	16,692 14,416			392 355							175 157	567 512		-		0		0			58 23	58 23	17,317 14,951
	966	8,419	-	112	0	2	1,570	10,103			370							180	550		-		0		Ő			36	36	10,689
		11,698 15,913		127 230	0 0	3 0	1,551 1,043	13,379 17,186	2		385 332							204 208	591 541		-		0 0		0 0			49 51	49 51	14,019 17,778
		8,544	600	230	0	3	2,668	11,818	2		571							192	765		-		0		0			30	30	12,613
		12,996	690	181	0	3	1,032	14,902	0		495							189	684		-		0		0			18	18	15,604
		10,965 7,006	667 837	259 145	0	10 243	2,042 993	13,943 9,224	0 9		449 380							135 126	584 515		0		0 0		0 0			17 21	17 21	14,544 9,760
	973	6,357	632	118	Ő	3,265	702	11,074	1		568							139	708		Ő		Ő		Ő			9	9	11,791
	974 975	6,700 5.281	327 286	49 38	0	3,112 6,534	775 686	10,963 12,825	24 64		650 732							118 96	792 892		0		0 0		0 0			55 27	55 27	11,810 13,744
		5,136	200	38	0	3,561	585	9,560	32		347							90 140	519		0		0		0			31	31	10,110
		3,019	256	15	0	4,424	547	8,261	17		524							219	760		43		43		0			41	41	9,105
		3,957 5,561	243 366	27 21	0	5,593 2,532	546 526	10,366 9,006	0 26		618 432							78 122	696 580		28		28 0		0 0			37 36	37 36	11,127 9,622
	980	6,378	607	5	0	3,467	536	10,993	61		223							132	416		37		37		0			33	33	11,479
		4,106 5,383	259 270	12 13	0 0	3,866 2,351	542 656	8,785 8,673	17 7		491 397							95 138	603 542		- 39		0 39		0			60 41	60 41	9,448 9,295
		3,722	320	10	22	1,845	827	6,746	0		555							214	769		19		19		0			39	39	5,255 7,573
		3,506	386	9	76	2,257	719	6,953	0		965							330	1,295		23		23		0		40	36	36	8,307
		3,897 6,402	711 901	24 33	40 48	2,323 3,536	733 577	7,728 11,497	0 0		513 179							181 148	694 327		16 61		16 61	-	0 0		18 19	42 19	60 38	8,498 11,923
	987	7,538	1,187	6	32	1,856	513	11,132	31		383							151	565		1		1	-	0	272	30	1 28	331	12,029
		6,271 4,740	752 1,081	7 13	54 102	2,157 1,562	668 537	9,909 8,035	7 8		457 184							169 157	633 349		11 26		11 26	-	0 0	504 612	54 24	30 0 52	588 688	11,141 9,098
		2,368	1,125	3	19	1,926	545	5,986	2		137							256	395		315		315	- 181	181	538	27	0 23	588	7,465
		2,845 2.955	1,197	3	27	1,302	507	5,881	36		254							286	576	106	141		141	- 75	75	663	41	0 12	716	7,495
		2,955 3,476	1,247 1,723	10 1	35	1,169 828	303 708	5,719 6,736	1 5		219 221							197 142	417 368	281 438	318 388		318 388	- 142 - 159	142 159	459 471	38 68	1 25 1 11	523 551	7,400 8,640
-	994	2,911	1,284	1	-	1,443	383	6,022	1		137							196	334	521	1,045		1,045	- 179	179	326	35	0 17	378	8,479
		3,494 1,951	1,840 1,836	3 4	-	970 703	283 152	6,590 4,646	27 26		83 162	8	6	30	3			82	192 235	153 122	307 429		307 429	- 190 - 237	190 237	543 418	52 54	0 14 1 20	609 493	8,041 6,162
		2,120	1,400	3	-	813	163	4,040	20 59		290	9	-	33	3	2	2 -		396	138	1,017		1,017	- 193	193	352	38	1 20	433	6,655
		1,784	1,975	2	-	1,092	304	5,157	90		205	15	-	19	6	1	9 -		345	144	635		635	- 345	345	378	26	0 23	427	7,053
	999 000	1,608 1,152	1,551 1,109	4	-	1,126 1,062	184 297	4,473 3,628	66 153		128 161	7 17	-	26 29	5 6	1	3 - 1 -		236 369	166 97	433 537		433 537	- 266 - 312	266 312	364 200	28 14	1 12 1 10	405 225	5,979 5,168
2	001	985	1,326	11	-	1,077	237	3,636	121		129	16	-	30	5	-			301	151	254		254	- 237	237	351	42	2	395	4,974
	002	764 1.013	796 842	5 3	-	1,264 1,064	290 203	3,119 3,124	251 241		226 91	14 26	-	6 11	8 5	1 1			506 375	76 79	188 206		188 206	- 305 - 322	305 322	226 552	30 29	0 0	256 581	4,450 4,687
2	004	699	1,000	2	-	1,339	92	3,132	261		95	8	1	7	5	2	- 1		380	(19)	75		75		0	376	34	1	411	3,998
	005	562 623	668 539	1 1	-	1,214	98 95	2,543	176		76	1	-	5	9	9	- 8		284	-	141 56		141 56		0	493 609	20	0 0	513	3,481 3,134
	006	(306)	539 (860)	(5)	- (-)	1,190 (970)	95 (79)	2,448 (2,220)													28		56 28			609 265	21 13	0	630 278	3,134 (2,526)
	8008	(394)	(606)	(10)	(-)	(1,302)	(97)	(2,408)															-						-	-2,408
L																					1					1				

Table 4. Striped marlin catches (in metric tons) by fisheries, 1952-2005. Blank indicates no effort. - indicates data not available. 0 indicates less than 1 metric ton. Provisional estimates in ().

¹ Estimated from catch in number of fish

²Contrains bait fishing, net fishing, trapnet, trolling, harpoon, etc.

updated 7/13/10 ISC/10/BILLWG-2/06, Table 1

		151011		Japan		().							Chines	e Taipei ⁵							Korea		Mexico			United	States ⁶			
	Distant-														Coastal									Hawaii		Calif	ornia			Grand
	water and Offshore	Constal			Other Bait				Distant-	0#ab asa	0 % ahaaa	0%ah ara	Constal	Constal	Gillnet		Constal				High-seas Drift									Total
Year			Driftnet	Harpoon ³		Trapnet	Other ⁴	Total	water Longline	Longline		Offshore Others	Coastal Harpoon			Coastal Longline		Other	Total	Longline		Total	All Gears	Longline	Longline	Gill Net H	larpoon l	Jnknown ⁷	Total	
1951 1952	7,246 8,890	115 152	10 0	4,131 2,569	88 6	78 68	10 6	11,678 11,691																						11,678 11,691
1952	10,796	77	0	2,509	20	21	87	12,408	-	-									-	-			-	-	-	-	-	-	-	12,408
1954	12,563	96	0	813	104	18	17	13,610	-	-									-	-			-	-	-	-	-	-	-	13,610
1955 1956	13,064 14,596	29 10	0 0	821 775	119 66	37 31	41 7	14,111 15,486	-	-									-	-			-	-	-	-	-	-	-	14,111 15,486
1957	14,268	37	0	858	59	18	11	15,251	-	-									-	-			-	-	-	-	-	-	-	15,251
1958 1959	18,525 17,236	42 66	0 0	1,069 891	46 34	31 31	21 10	19,734 18,267	-	- 427								91	- 518	-			-	-	-	-	-	-	-	19,734 18,785
1958	20,058	51	1	1,191	23	67	7	21,400	-	520								127	647	-			-	-	-	-	-	-	-	22,047
1961	19,715	51	2	1,335	19	15	11	21,147	-	318								73	391	-			-	-	-	-	-	-	-	21,538
1962 1963	10,607 10,322	78 98	0	1,371 747	26 43	15 17	18 16	12,115 11,244	-	494 343								62 18	556 361	-			-	-	-	-	-	-	-	12,671 11,605
1964	7,669	91	4	1,006	40	16	26	8,852	-	358								10	368	-			-	-	-	-	-	-	-	9,220
1965	8,742	119	0	1,908	26	14	182	10,991	-	331								27	358	-			-	-	-	-	-	-	-	11,349
1966 1967	9,866 10,883	113 184	0	1,728 891	41 33	11 12	4 5	11,763 12,008	-	489 646								31 35	520 681	-			-	-	-	-	-	-	-	12,283 12,689
1968	9,810	236	0	1,539	41	14	9	11,649	-	763								12	775	-			-	-	-	-	-	-	-	12,424
1969 1970	9,416 7,324	296 427	0 0	1,557 1,748	42 36	11 9	14 3	11,336 9,547	0	843 904								7 5	850 909	-			-	- 5	-	-	- 612	- 10	- 627	12,186 11,083
1971	7,037	350	1	473	17	37	31	7,946	-	992								3	905 995	0			-	1	-	-	99	3	103	9,044
1972	6,796	531	55	282	20	1	2	7,687	-	862								11	873	0			2	0	-	-	171	4	175	8,737
1973 1974	7,123 5,983	414 654	720 1,304	121 190	27 27	23 16	2 2	8,430 8,176	- 1	860 880								119 136	979 1,017	0			4	0	-	-	399 406	4 22	403 428	9,816 9,627
1975	7,031	620	2,672	205	58	18	2	10,606	29	899								153	1,081	0			-	0	-	-	557	13	570	12,257
1976 1977	8,054 8,383	750 880	3,488 2,344	313 201	170 71	14 7	12 2	12,801 11,888	23 36	613 542								194	830 719	0 219			-	0 17	-	-	42 318	13 19	55 354	13,686 12,961
1978	8,001	1,031	2,344 2,475	130	110	22	2	11,000		542 546								141 12	558	68			-	9	-	-	1,699	19	1,721	14,049
1979	8,602	1,038	983	161	45	15	4	10,848	7	661								33	701	-			7	7	-	-	329	57	393	11,949
1980 1981	6,005 7,039	849 727	1,746 1,848	398 129	29 58	15 9	1	9,043 9,813	10 2	603 656								76 25	689 683	64			380 1,575	5 3	-	160 473	566 271	62 2	793 749	10,905 12,820
1982	6,064	874	1,257	195	58	7	1	8,456	1	855								49	905	48			1,365	5	Ő	945	156	10	1,116	11,842
1983 1984	7,692 7,177	999 1,177	1,033	166 117	30 98	9 13	2 0	9,931	0	783 733								166 264	949 997	11 48			120 47	5 3	0 12	1,693 2,647	58 104	7 75	1,763	12,763 13,520
1985	9,335	999	1,053 1,133	191	90 69	10	0	9,635 11,737	-	566								259	997 825	24			18	2	0	2,047	305	104	2,841 3,401	15,981
1986	8,721	1,037	1,264	123	47	9	0	11,201	-	456								211	667	9			422	2	0	2,069	291	109	2,471	14,761
1987 1988	9,495 8,574	860 678	1,051 1,234	87 173	45 19	11 8	0	11,549 10,686	3	1,328 777								190 263	1,521 1,040	44 27			550 613	24 24	0 0	1,529 1,376	235 198	31 64	1,819 1,662	15,439 14,001
1989	6,690	752	1,596	362	21	10	Ő	9,431	50	1,491								38	1,579	40			690	218	Ö	1,243	62	56	1,579	13,279
1990 1991	5,833 4,809	690 807	1,074 498	128 153	13	4 5	0 0	7,742 6,292	143 40	1,309 1,390								154 180	1,606	61			2,650 861	2,436 4,508	0 27	1,131 944	64 20	43 44	3,674	15,672 14,306
199	7,234	1,181	498 887	381	20 16	5 6	0	6,292 9,705	40 21	1,390								243	1,610 1,737	5 8			1,160	4,508 5,700	62	944 1,356	20 75	44 47	5,543 7,240	14,306 19,842
1993	8,298	1,394	292	309	43	4	1	10,341	54	1,174								310	1,538	15			812	5,909	27	1,412	168	161	7,677	20,368
1994 1995	7,366 6,422	1,357 1,387	421 561	308 423	37 34	4 7	0	9,493 8,834	- 50	1,155 1,135								219 225	1,374 1,410	66 10			581 437	3,176 2,713	631 268	792 771	157 97	24 29	4,780 3,878	16,228 14,559
1996	6,916	1,067	428	597	45	4	Ő	9,057	9	701	2	-	19	10		-	-	225	741	15		15	439	2,502	346	761	81	15	3,705	13,957
1997	7,002	1,214	365	346	62	5	0	8,994	15	1,358	1	1	27	8	-	24	-		1,434	100		100	2,365	2,881	512	708	84	11	4,196	17,089
1998 1999	6,233 5,557	1,190 1,049	471 724	476 416	68 47	2 5	0 0	8,440 7,798	20 70	1,178 1,385	8 4	-	17 51	15 5	1	-	-		1,239 1,516	153 132		153 132	3,603 1,136	3,263 3,100	418 1,229	931 606	48 81	19 27	4,679 5,043	18,114 15,625
2000	6,180	1,121	808	497	49	5	0	8,660	325	1,531	5	-	74	5	1	1	-		1,942	202		202	2,216	2,949	1,885	646	90	9	5,579	18,599
2001 2002	6,932 6,230	908 965	732 1,164	230 201	30 29	15 11	0 0	8,847 8,600	1,039 1,633	1,691 1,557	17	- 1	64 1	8 16	1	1	-		2,821 3,217	438 439		438 439	780 465	220 204	1,749 1,320	375 302	52 90	5 3	2,401 1,919	15,287 14,640
2002	5,376	965 1,063	1,104	149	29 28	4	0	8,600 7,818	1,033	2,196	3	-	-	8	-	-			3,217	439 381		439 381	465 671	204 147	1,812	216	90 107	0	2,282	14,640
2004	5,395	1,509	1,062	229	30	4	0	8,229	884	1,828	5	-	-	7	1	-	3		2,728	410		410	270	213	898	169	62	37	1,379	13,016
2005 2006	5,359 6,181	1,295 1,508	956 796	187 244	337 342	3 5	0 1	8,137 9,077	437	1,813	1	-	-	5	2	-	18		2,276	434 477		434 477	235 347	1,475 1,175		220 444	76 71	0 2	1,771 1,692	12,853 11,593
2007	(6,109)	(2,017)	(829)	(122)	(367)	(2)	(1)	(9,446)												452		452	383	1,444		484	58	0	1,986	(12,267)
2008	(4,426)	(1,758)	(648)	(173)	(349)	(3)	(0)	(7,357)															(84)							(7,441)

Table 5. Swordfish catches (in metric tons) by fisheries, 1952-2005. Blank indicates no effort. - indicates data not available. 0 indicates less than 1 metric ton. Provisional estimates in ().

¹ Catch data are currently unavailable for Republic of Korea, Philippines, and some other countries catching swordfish in the North Pacific.

² Catches by gear for 1952-1970 were estimated roughly using FAO statistics and other data. Catches for 1971-2002 are more reliably estimated.

³ Contrains trolling and harpoon but majority of catch obtained by harpoon.

⁴ For 1952-1970 "Other" refers to catches by net fishing and various unspecified gears.

⁵ Offshore longline category includes some catches from harpoon and other fisheries but does not include catches unloaded in foreign ports.

⁶ Estimated round weight of retained catch. Does not include discards.

⁷ Unknown includes pole and line, purse seine, troll and troll/handline, half ring, and unspecified gears.

only one vessel fished so combined with Hawaii longline

updated 7/13/2010 ISC/10/BILLWG-2/06, Table 2

Attachment 1. List of Participants

<u>Japan</u>

Hideki Nakano National Research Inst. of Far Seas Fisheries 5-7-1 Orido, Shimizu Shizuoka, Japan 424-8633 81-54-336-6035, 81-54-335-9642 (fax) hnakano@affrc.go.jp

Yukio Takeuchi National Research Inst. of Far Seas Fisheries 5-7-1 Orido, Shimizu Shizuoka, Japan 424-8633 81-54-336-6039, 81-54-335-9642 (fax) yukiot@affrc.go.jp

Kotaro Yokawa National Research Inst. of Far Seas Fisheries 5-7-1 Orido, Shimizu Shizuoka, Japan 424-8633 81-54-336-6046, 81-54-335-9642 (fax) yokawa@fra.affrc.go.jp

Republic of Korea

Jae-Bong Lee National Fisheries Research and Dev. Inst. 152-1, Haean-ro, Gijang-up, Gijang-gun Busan, Republic of Korea 619-705 82-51-720-2296, 82-51-720-2277 (fax) leejb@nfrdi.go.kr

Joon-Taek Yoo National Fisheries Research and Dev. Inst. 152-1, Haean-ro, Gijang-up, Gijang-gun Busan, Republic of Korea 619-705 82-51-720-2334, 82-51-720-2337 (fax) yoojt@nfrdi.go.kr

United States

Jon Brodziak NOAA/NMFS PIFSC 2570 Dole Street Honolulu, HI 96822-2396 808-983-2964, 808-983-2902 (fax) Jon.Brodziak@noaa.gov

Dean Courtney NOAA/NMFS PIFSC 2570 Dole St. Honolulu, HI 96822-2396 808-983-5345, 808-983-2902 (fax) Dean.Courtney@noaa.gov

Gerard DiNardo NOAA/NMFS PIFSC 2570 Dole St. Honolulu, HI 96822-2396 808-983-5397, 808-983-2902 (fax) Gerard.DiNardo@noaa.gov

John Hyde NOAA/NMFS SWFSC 3333 N. Torrey Pines Ct. La Jolla, CA 92037 858-546-7086, 858-546-7003 (fax) John.Hyde@noaa.gov

Kevin Piner NOAA/NMFS PIFSC 2570 Dole St. Honolulu, HI 96822-2396 808-983-5705, 808-983-2902 (fax) Kevin.Piner@noaa.gov

Darryl Tagami NOAA/NMFS PIFSC 2570 Dole St. Honolulu, HI 96822-2396 808-983-5745, 808-983-2902 (fax) Darryl.Tagami@noaa.gov Russ Vetter NOAA/NMFS SWFSC 8604 La Jolla Shores Drive La Jolla, CA 92037 858-546-7125, 858-546-5656 (fax) Russ.Vetter@noaa.gov

Lyn Wagatsuma Joint Inst. of Mar. and Atmos. Research 2570 Dole St. Honolulu, HI 96822-2396 808-983-2966, 808-983-2902 (fax) Lyn.Wagatsuma@noaa.gov

Attachment 2. Working Papers and Background Papers

WORKING PAPERS

ISC/10/BILLWG-2/01	Biological Reference Point Table. Kevin Piner and Kotaro Yokawa. (Kevin.Piner@noaa.gov)
ISC/10/BILLWG-2/02	Age-Based Analyses of Potential Biological Reference Points for the Western and Central North Pacific Swordfish <i>(Xiphias gladius)</i> Stock. Jon Brodziak and Dean Courtney. (Jon.Brodziak@noaa.gov)
ISC/10/BILLWG-2/03	Production model analyses of maximum sustainable yield- based reference points for the North Pacific swordfish stocks. Jon Brodziak and Gakushi Ishimura. (Jon.Brodziak@noaa.gov)
ISC/10/BILLWG-2/04	Preliminary analysis of area boundary to standardize CPUE of striped marlin in North Pacific Ocean. Minoru Kanaiwa and Kotaro Yokawa. (m3kanaiw@bioindustry.nodai.ac.jp)
ISC/10/BILLWG-2/05	The U.S. Longline Fishery for Striped Marlin in the North Pacific Ocean. Russell Ito and Karen Sender. (Russell.Ito@noaa.gov)
ISC/10/BILLWG-2/06	Available data of striped marlin and swordfish by the Japanese fishery in the North Pacific. Ai Kimoto and Kotaro Yokawa. (aikimoto@affrc.go.jp)
BACKGROUND PAPERS	
ISC/10/BILLWG-1/REPORT	Report from the April 2010 ISC Billfish Working Group Workshop. 15-22 April 2010. BILLWG.

(Gerard.DiNardo@noaa.gov)

21

Attachment 3. Agenda

INTERNATIONAL SCIENTIFIC COMMITTEE FOR TUNA AND TUNA-LIKE SPECIES IN THE NORTH PACIFIC

BILLFISH WORKING GROUP (BILLWG)

INTERCESSIONAL WORKSHOP AGENDA

- Meeting Site: Hotel Grand Pacific Galiano Room #233 463 Belleville Street Victoria BC Canada, V8V 1X3 250-386-0450, 250-380-4475 (fax)
- Meeting Dates: 12-13 July 2010
- Goals: Finalize advice on potential billfish biological reference points, delineate spatial structure of North Pacific striped marlin within areas (WCPO and EPO) delineated at the April 2010 BILLWG Workshop, review and modify (if necessary) current conservation advice, and review World Blue Marlin Symposium proposal.

July 12 (Monday), 0830-0900 - Registration

July 12 (Monday), 0900-1200

- Opening of Billfish Working Group (BILLWG) Workshop

 Welcoming Remarks
 Introductions
- 2. Adoption of Agenda and Assignment of Rapporteurs
- Computing Facilities

 Access
 Security Issues
- 4. Numbering Working Papers and Distribution Potential
- 5. Status of Work Assignments and Meeting Summaries
- 6. Biological Reference Pointsa. Potential BRP for swordfishb. Finalize BRP table

July 12 (Monday), 1200-1300 – Lunch

July 12 (Monday), 1300-1400

7. Review of Current Billfish Conservation Advice

July 12 (Monday), 1400-1700

8. Description of Regionalized Fisheries a. Country reports

July 13 (Tuesday), 1000-1100

- 9. World Blue Marlin Symposium Planning
- 10. Other Matters
 - a. RFMO Plans
 - b. Work Assignments
 - c. Future Meetings

July 13 (Tuesday), 1100-1400

11. Rapporteurs complete sections & report finalized

July 13 (Tuesday), 1400-1600

- 12. Clearing of Report
- 13. Adjournment