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Abstract	
We	analyzed	the	logbooks	recorded	by	the	Japanese	longline	vessels	to	obtain	the	
abundance	 index	 required	 for	 the	 Western	 and	 Central	 North	 Pacific	 Ocean	
(WCNPO)	 swordfish	 stock	 assessment.	 Considering	 the	 transition	 of	 Japanese	
longline	fishing	gear	and	the	change	of	the	logbook	format,	we	separated	the	logbook	
into	two	time	series	(1976	to	1993	and	1994	to	2021).	Using	the	R-INLA	package,	
we	 constructed	 multiple	 GLMMs,	 including	 the	 spatiotemporal	 model	 with	 and	
without	gear	effect.	We	selected	the	best	model	using	the	information	criteria	WAIC	
and	LOOCV.	Model	selection	preferred	spatiotemporal	models	without	gear	effect	for	
both	time	series.	Upon	obtaining	the	spatiotemporally	resolved	standardized	CPUE,	
we	calculated	the	averages	for	each	management	area.	
	
Introduction	
Japanese	longline	fleets	have	been	operating	in	the	Pacific	Ocean	since	the	1950s,	
and	these	operations	have	been	logged	for	more	than	60	years.	Fishing	ground	and	
fishing	 gears	 have	 changed	 over	 these	 years,	 causing	 spatiotemporal	 bias.	
Catchability	 of	 the	 longline	 fishery	 might	 have	 changed	 as	 well	 (Miyabe,	 N.	 and	
Nakano	 2004).	 Thus,	 it	 is	 necessary	 to	 correct	 for	 these	 biases	 and	 remove	 any	
historical	catchability	change	through	the	process	of	CPUE	standardization.	 	

The	 catch	 size	 of	 highly	 migratory	 fishes	 such	 as	 swordfish	 is	 likely	
dependent	on	fishing	grounds	(Ijima	and	Kanaiwa	2018),	indicating	an	age-specific	
migration.	 It	 is	 therefore	 beneficial	 to	 consider	 age-specific	 CPUE	 for	 the	 stock	
synthesis	model	that	assumes	age-structured	population	dynamics	for	swordfish.	In	
the	previous	assessment,	subareas	were	defined	based	on	the	catch	size,	and	area-
specific	CPUE	was	calculated	for	CPUE	standardization	(Kanaiwa	and	Ijima	2018).	
Although	this	analysis	successfully	accounted	for	the	age-specific	migration,	it	did	
not	improve	the	issue	of	the	data	bias	caused	by	the	change	of	fishing	ground	and	
gear	 settings.	 It	 has	 recently	 been	 reported	 that	 such	 problems	 can	 be	 better	
ameliorated	using	geostatistical	models	(Ijima	and	Koike	2020,	Ijima	and	Koike	2021,	
Ijima	et	al.,	2022,	Ijima	2022).	

We	first	examined	the	historical	change	in	Japanese	longline	operations	in	
this	 study.	We	 then	constructed	multiple	GLMMs,	 including	geostatistical	models,	
and	 selected	 the	 best	 model	 based	 on	 information	 criterion	 values.	 We	 finally	
calculated	the	standardized	CPUE	using	the	estimated	parameters.	
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Materials	and	Methods	
Japanese	longline	operational	data	
Japanese	 longline	 operational	 data	 have	 been	 available	 since	 1952.	However,	 the	
available	information	has	changed	over	the	years.	For	example,	the	hooks	between	
floats	were	not	recorded	until	1975,	and	vessel	names	were	also	not	organized	until	
the	mid-1970s.	In	addition,	the	data	format	was	changed	in	1993,	which	may	have	
altered	the	accuracy	of	the	data	compared	to	previous	years.	The	fields	regarding	
details	on	the	gear	configuration	and	catch	in	weight	have	been	added	from	the	year	
1994.	One	notable	change	in	the	longline	fishery	is	that	the	material	of	the	lines	was	
changed	from	hemp	to	nylon	in	the	mid-1990s,	and	the	method	of	operation	may	
have	changed	to	maintain	bait	depth.	However,	no	such	information	was	recorded	in	
the	 logbook.	 In	order	 to	maintain	consistency	 in	 the	data	 format	and	quality,	 this	
study	 splits	 the	data	 into	 two-time	 series	 groups,	 “early”	 (1976-1993)	 and	 “late”	
(1994-2021),	to	standardize	the	CPUE.	The	data	consistency	is	considered	to	have	
been	maintained	during	these	two	time	periods.	
	
Data	preparation	
We	used	the	data	 from	WCPNO	Area	1	and	Area	2,	defined	by	Ijima	and	Kanaiwa	
2018	(Figure	1).	We	kept	this	old	delineation	to	allow	comparison	with	our	previous	
study.	However,	we	removed	a	small	section	between	150°W	to	135°W	and	5°N	to	
10°N	from	our	study	area	to	reflect	the	new	delineation	of	the	WCNPO	defined	in	ISC	
22.	 	

We	extracted	 the	 fishing	data	 for	 these	 two	areas	and	 filtered	 for	vessels	
above	20	tons	and	operations	with	3	to	21	hooks	between	floats.	Although	the	area	
and	periods	were	divided,	the	operational	data	was	still	vast,	and	the	cost	of	time	
was	 high	 to	 perform	 the	 analysis	 with	 a	 spatiotemporal	 model.	 Therefore,	
operational	 data	 were	 aggregated	 by	 year,	 month,	 1°×1°	 grid,	 vessel	 name,	 and	
hooks	between	floats	(hereafter	HBF)	to	reduce	the	computation	time.	
	
Fishing	Effort	and	nominal	CPUE	
Japanese	longline	fishing	ground	seems	to	be	concentrated	around	three	areas,	one	
of	which	is	located	east	of	Japan,	another	along	the	equatorial	line,	and	the	last	one	
around	 Hawaii	 (Figure	 2).	 The	 fishing	 area	 seems	 to	 have	 reached	 maximum	
coverage	during	the	1980s	and	1990s,	but	it	started	shrinking	from	the	2000s.	By	
2010,	 the	 Hawaii	 fishing	 ground	 has	 disappeared,	 and	 the	 current	 fishery	 is	
operating	 in	 a	minimal	 area,	 not	 reaching	 the	 eastern	 side	 of	 the	 Pacific	 due	 to	
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COVID-19	effects.	 	
Although	fishing	effort	has	been	decreasing,	especially	in	the	EPO	area,	the	

nominal	CPUE	has	increased	in	this	area	(Figure	3).	Additionally,	for	Area	1,	nominal	
CPUE	used	to	be	high	around	the	latitude	line	between	20°N	and	30°N,	east	of	140°E,	
but	since	2000	high	CPUE	area	in	the	north	around	40°N	has	appeared.	
	
Gear	setting	
A	high	number	of	HBFs	is	generally	thought	to	allow	the	bait	to	sink	deeper	and	affect	
catchability	between	species	distributed	at	different	depths	(Ward	and	Hindmarsh	
2007).	We	see	a	drastic	change	in	HBF	around	1994	(Figure	4).	Furthermore,	we	see	
that	the	number	of	branch	lines	has	increased	since	1994,	which	may	also	have	the	
purpose	of	sinking	the	lighter	line	deeper.	However,	it	is	important	to	note	other	gear	
changes	when	using	the	HBF	as	a	proxy	for	depth	because	the	material	change	in	
line	could	significantly	alter	the	number	of	HBF.	

Japanese	 long-liners	 also	 change	 their	 gear	 settings	 depending	 on	 the	
locations.	For	instance,	fishermen	fishing	in	the	northern	part	of	area	1	use	fewer	
HBFs	even	after	the	line	material	change	(Figure	4).	Fishermen	also	choose	shorter	
branch	line	and	buoy	line	in	area	1	than	area	2	(Figure	5).	

Considering	all	of	the	above	it	is	safe	to	say	that	fishing	gears/settings	have	
changed	over	 the	years	and	are	heavily	 influenced	by	 fishing	 locations	and	other	
species'	catch.	We	therefore	took	caution	when	we	used	a	simple	HBFs	proxy	for	the	
fishing	gears	effect.	

	
Spatial	pattern	of	fish	size	(depicted	in	mean-body	weight)	
Along	with	the	spatial	dependence	on	gear,	we	also	noticed	that	the	change	in	catch	
size	 in	 latitude	 revealed	 that	very	 large	 fish	were	 caught	 in	Area	1	 (Figure	6).	 In	
addition,	a	mix	of	large	and	small	fish	(including	juvenile	fish)	were	caught	in	the	
mid-Pacific	area	in	Area	2	(Figure	6).	
	
Statistical	models	
We	used	 the	R	 software	 package	R-INLA	 (Lindgren	 and	Rue	 2015)	 for	 the	 CPUE	
standardization.	We	constructed	several	generalized	linear	mixed	models	(GLMMs)	
considering	 the	 spatiotemporal	 effect	 and	 examined	 the	 combination	 of	multiple	
fixed	effects	to	construct	the	optimal	model	(Table	1).	We	tested	the	theory	of	gear	
setting	simply	reflecting	fishing	location	differences	by	comparing	models	with	and	
without	HBF.	Two	distributions	(zero-inflated	Poisson;	ZIP	and	negative	binomial;	
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NB)	were	considered	for	the	response	variable,	which	was	the	number	of	fish	caught	
with	offset	terms	of	the	number	of	hooks	(1,000	hooks).	The	explanatory	variables	
were	year,	quarter,	 fishing	 location,	 vessel	name,	 and	HBF.	The	effect	of	 year	and	
quarter	were	set	as	fixed	effects	of	categorical	variables.	The	vessel	name	and	HBF	
were	set	as	random	effects.	The	spatial	effects	were	either	considered	as	correlations	
by	location	(stochastic	partial	differential	equation	approach;	SPDE)	or	defined	as	a	
spatiotemporal	model	that	considered	correlations	by	location	and	time	(stochastic	
partial	 differential	 equation	 approach	 with	 ar1;	 spde_time).	 The	 spatiotemporal	
GLMM	in	negative	binomial	distribution	could	be	written	as:	

𝐶𝑎𝑡𝑐ℎ!~	𝑁𝐵(𝑟, 	𝑝)  

𝐸(𝐶𝑎𝑡𝑐ℎ!) = 𝜇! = 𝑟(1 − 𝑝)/𝑝 

Hyperparameter (size) = 𝑟 = 𝜇(𝑝/(1 − 𝑝)) 

log(𝜇!) = 𝐗!𝛃 + 𝐙!𝛅! + 	𝐀!𝐮 + log	(1000 ∗ ℎ𝑜𝑜𝑘𝑠!) , 

where	 𝐶𝑎𝑡𝑐ℎ! is	a	number	of	swordfish	caught	by	fishing	set	i,	 𝜇! 	 is	the	mean	value	
of	swordfish	caught	by	set	 i,	 𝑟	 is	 the	size	and	 𝑝	 is	 the	probability	of	success	 for	
negative	binomial	distribution	and	can	be	rewritten	as:	

𝑟 = "!

#!$	"
 and 𝑝 = 	 "

#!
.  

The	same	model	with	zero-inflated	Poisson	distribution	could	be	written	as:	

𝐶𝑎𝑡𝑐ℎ!~	𝑍𝐼𝑃(𝜇! , 𝜋𝑝)  

𝐸(𝐶𝑎𝑡𝑐ℎ!) = 𝜇!(1 − 𝜋) 

log(𝜇!) = 𝐗!𝛃 + 𝐙!𝛅! + 	𝐀!𝐮 + log	(1000 ∗ ℎ𝑜𝑜𝑘𝑠!). 

where	 𝐶𝑎𝑡𝑐ℎ! 	 is	number	of	swordfish	caught	by	fishing	set	i	and	 𝜋	 is	the	
probability	of	zero	catch.	

In	 either	 model,	 𝐗𝑖	 is	 the	 covariate	 matrix	 row	 in	 the	 set	 i,	 𝜷	 are	 fixed	 effect	
coefficients	vector	for	each	covariates,	𝐙𝑖	 is	the	model	matrix	row	for	the	random	
effects	in	set	i	and	𝜹𝒊	is	the	random	effect	coefficients	vector	that	is	𝜹𝑖~𝐍(𝟎,𝚿),	where	
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𝚿	is	the	covariance	matrix	that	depends	on	the	number	of	random	effects	variables.	
𝐀𝑖	is	a	projector	matrix	row	in	the	set	i,	and	𝐮	is	a	spatial	effect.	

The	elements	of	spatial	effect	at	location	s	in	year	t	(𝑢𝑠,𝑡)	follows	the	AR1	process	
𝑢𝑠,𝑡	=	𝜌𝑢𝑠,𝑡−1	+	𝑣𝑠,𝑡,	where	𝜌	is	an	auto-correlation	parameter	and	𝑣𝑠,𝑡	is	a	spatial	
Gaussian	random	field	 𝑣&,(~	𝐺𝑀𝑅𝐹(0, Σ).	The	element	of	covariance	is	 Σ),* =

	𝜎+,𝐶𝑜𝑟- V𝑉X𝑠)Y, 𝑣(𝑠*)Z	 and	correlation	function	is	the	Matérn	correlation	function	

	 𝐶𝑜𝑟- V𝑉X𝑠)Y, 𝑣(𝑠*)Z = 	
,"#$

.(0)
X𝜅 ∥ 𝑠) − 𝑠* ∥Y

+Κ+X∥ 𝑠) − 𝑠* ∥Y.	

R-INLA	estimates	the	posterior	of	parameters	using	Bayesian	inference.	The	prior	
coefficient	 vector	 for	 each	 covariate	 (β)	 was	 set	 as	 a	 default	 value	 of	 the	 INLA	
package’s	Guassian	prior.	We	used	the	half-Cauchy	distribution	truncated	at	zero	to	
serve	 as	 a	 prior	 for	 the	 standard	 deviation	 sigma	 for	 random	 effect	 coefficients.	
Penalized	Complexity	(PC)	priors	were	used	for	the	spatial	effects	parameters,	auto-
correlation	parameter,	and	size	parameter	of	negative	binomial.	The	practical	range	
and	marginal	deviation	were	used	to	check	for	spatial	effects	parameters	(Krainski	
et	al	2018,	Fuglstad	et	al.	2019).	
	
Model	selection	
One	 of	 the	 benefits	 of	 using	 R-INLA	 is	 that	 it	 can	 calculate	 Widely	 Applicable	
Information	Criterion	(WAIC)	and	Leave	One	Out	Cross	Validation	(LOOCV)	since	it	
uses	the	Bayesian	inference	technique	(Watanabe	2010,	Vehtari	et	al.,	2017).	These	
two	information	criterions	are	known	to	be	more	suitable	for	comparing	complex	
models	 (e.g.,	 random	 effect	 models	 and	 hierarchical	 models)	 since	 normal	 AIC	
cannot	 accurately	 reflect	 the	 model	 complexity	 (Watanabe	 2010).	 In	 this	 study,	
model	 selection	 was	 performed	 using	 WAIC	 and	 LOOCV,	 and	 the	 value	 of	 over-
dispersion	was	also	confirmed.	
	
Standardized	CPUE	
The	standardized	CPUE	was	calculated	using	the	estimated	fixed	effect	parameters	
and	 the	 potential	 spatial	 field	 using	 INLA’s	 prediction	 function.	 CPUEs	 were	
estimated	 for	 each	 mesh	 node	 within	 the	 study	 area.	 Because	 each	 node	 also	
corresponds	to	a	generating	point	in	the	Voronoi	diagram,	the	indices	for	each	area	
and	period	were	area-weighted	evenly	and	allowed	us	to	avoid	giving	locations	with	
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more	sets	a	disproportionate	weight	in	the	final	CPUE	indices.	
	
Results	and	Discussion	
Results	of	model	selection	
As	 a	 result	 of	 model	 selection	 using	 information	 criterion	 and	 visual	 model	
diagnostics,	spatiotemporal	models	without	gear	effect	(HBF)	were	selected	for	both	
time	series	and	areas	(Table	2).	The	negative	binomial	models	were	chosen	for	the	
final	model	because	1)	information	criteria	scores	were	better	for	all	models	with	
NB	distribution,	2)	randomized	quantile	residual	plots	showed	a	clustered	pattern	
for	the	ZIP	model,	and	3)	most	ZIP	models	could	not	calculate	LOOCV	that	indicate	
some	 convergence	 issues.	 Spatiotemporal	 models	 showed	 better	 information	
criterion	scores	for	all	time	periods	and	areas	compared	to	simple	spatial	models.	
Between	the	two	spatiotemporal	models	(with	and	without	HBF),	both	WAIC	value	
and	LOOCV	value	showed	better	score	for	model	with	gear	effect	(HBF)	except	for	
the	early	data	set	from	Area	2.	We	chose	the	optimal	model	for	each	data	set	strictly	
based	 on	 the	 two	 information	 criterion	 values.	 Therkefore	 we	 used	 the	 spatio-
temporal	models	with	HBF	effect	for	Area	1	early,	Area	1	late,	and	Area	2	late	data	
set,	and	spatio-temporal	models	without	HBF	effect	for	Area	2	early	data	set.	 	 	
However,	we	would	like	to	point	out	that	the	information	criterion	score	difference	
between	the	two	models	were	small	(only	1.5%	score	change)	which	is	likely	due	to	
spatial	patterns	explaining	many	HBF	effects.	Furthermore,	the	estimated	random	
effect	parameter	of	HBF	for	early	dataset	had	uncomfortably	large	value	(Table	3),	
making	us	wonder	about	the	possibility	of	this	parameter	absorbing	the	potential	
year	effects	and	thus	require	caution	in	future	analysis.	 	
	
Model	output	
All	models	regardless	of	the	time	period	and	area,	year	effect	was	close	to	zero	for	
most	years	and	did	not	 function	well	as	a	parameter	(Figure	7	~	10).	Other	fixed	
effects	 and	 hyperparameters	 were	 unlikely	 to	 be	 zero	 based	 on	 the	 posterior	
distribution	 and	 were	 well	 estimated.	 Standardized	 CPUE	 showed	 lower	 value	
estimated	for	both	time	periods	of	Area	1,	and	similar	values	for	Area	2	(Table	4,	
Figure	 11).	 Vessel	 effect	 was	 one	 of	 the	 effect	 removed	 from	 models	 for	
standardization,	 thus	 we	 compared	 the	 CPUE	 prediction	 when	 vessel	 effect	 was	
included	and	excluded	for	late	data	set	from	area	1	(Figure	12).	The	result	showed	
that	the	vessel	effect	was	in	fact	the	reason	nominal	CPUE	is	high	compared	to	the	
standardized	CPUE.	This	indicates	a	possibility	that	certain	vessels	with	high	CPUE	
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are	likely	over-representing	the	trend	when	without	standardization.	
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Table	1.	 	 Statistical	model	 list	 for	CPUE	standardization	considered	 for	all	 time-
period	and	area	combinations	(Area1×early,	Area1×late,	Area2×early,	Area2×late)	
No	 Model	 INLA	function	

001	 simple	spatial	model	+	

gear	(hbf)	

swo	~	-1	+	intercept	+	yr	+	qtr	 	 +	f(hbf,	model="iid",	

hyper=hcprior)	+	f(jp_name,	model="iid",	

hyper=hcprior)	+	 	 f(w,	model=spde)	

002	 spatio-temporal	model	+	

gear	(hbf)	

swo	~	-1	+	intercept	+	yr	+	qtr	 	 +	f(hbf,	model="iid",	

hyper=hcprior)	+	f(jp_name,	model="iid",	

hyper=hcprior)	+	 	 f(w,	model=spde,	group=w.group,	

control.group=list(model="ar1"))	

003	 spatio-temporal	model	 swo	~	-1	+	intercept	+	yr	+	qtr	+	f(jp_name,	

model="iid",	hyper=hcprior)	+	 	 f(w,	model=spde,	

group=w.group,	control.group=list(model="ar1"))	
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Table	2.	WAIC	and	LOOCV	values	for	each	model.	Bold	number	indicates	the	lowest	
information	criterion	score.	
Early	(1976	–	1993).	 	
Model	 Distribution	

	
Area1	 Area2	

001	 Simple	 spatial	 model	 +	 gear	

(hbf)	

NB	 waic	 725,465.3	 	 533,806.1	 	

loocv	 725,920.4	 	 535,030.4	 	

ZIP	 waic	 1,071,908.9	 	 775,959.3	 	

loocv	 NA	 NA	

002	Spatio-temporal	model	+	gear	

(hbf)	

NB	 waic	 714,714.8	 	 531,090.3	

loocv	 715,205.7	 	 524,640.5	

ZIP	 waic	 999,784.0	 	 NA	

loocv	 NA	 NA	

003	Spatio-temporal	model	 NB	 waic	 721,592.3	 	 525,215.8	 	

loocv	 722,175.2	 	 526,389.8	 	

ZIP	 waic	 1,035,782.6	 	 723,221.2	 	

loocv	 NA	 NA	

	
Late	(1994	–	2021).	 	
Model	 Distribution	

	
Area1	 Area2	

001	 Simple	 spatial	 model	 +	 gear	

(hbf)	

NB	 waic	 473,988.6	 	 245,184.7	 	

loocv	 474,339.7	 	 245,196.4	 	

ZIP	 waic	 681,307.0	 	 266,868.9	 	

loocv	 NA	 NA	

002	Spatio-temporal	model	+	gear	

(hbf)	

NB	 waic	 464,577.0	 	 241,426.4	

loocv	 464,990.1	 	 240,570.5	

ZIP	 waic	 614,289.9	 	 257,718.1	

loocv	 NA	 NA	

003	Spatio-temporal	model	 NB	 waic	 471,878.5	 	 241,613.7	 	

loocv	 472,021.9	 	 241,653.4	 	

ZIP	 waic	 633,743.9	 	 258,887.5	 	

loocv	 NA	 NA	
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Table	3.	Parameter	estimates	for	random	effect	(𝝈)	for	Area	1	
	 	

Parameter	 Simple	Spatial	 ar1	with	hbf	 ar1	without	hbf	

Early	(1976	-	
1993)	

hbf	 43.984	 47.688	 --	

	
vessel	name	 0.985	 0.94	 0.789	

Late	(1994	–	
2021)	

hbf	 2.07	 3.343	 --	

	
vessel	name	 1.37	 1.191	 0.459	
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Table	4.	Nominal	CPUE	(n	CPUE),	standardized	CPUE	(std	CPUE),	and	standard	
deviation	for	each	region	(early)		

Area	1	 Area2	

year	 nCPUE	 stdCPUE	 SD	 nCPUE	 stdCPUE	 SD	

1976	 0.9651	 	 0.4413	 	 0.1011	 	 0.2784	 	 0.3309	 	 0.0306	 	

1977	 0.9752	 	 0.3801	 	 0.1012	 	 0.2045	 	 0.3146	 	 0.0396	 	

1978	 0.8401	 	 0.3934	 	 0.0910	 	 0.2189	 	 0.2614	 	 0.0233	 	

1979	 0.8937	 	 0.3596	 	 0.0844	 	 0.2185	 	 0.2512	 	 0.0246	 	

1980	 0.6511	 	 0.2488	 	 0.0489	 	 0.3057	 	 0.4566	 	 0.0506	 	

1981	 0.6709	 	 0.2560	 	 0.0531	 	 0.3181	 	 0.2577	 	 0.0166	 	

1982	 0.7351	 	 0.4673	 	 0.1265	 	 0.2341	 	 0.2856	 	 0.0263	 	

1983	 0.9974	 	 0.4513	 	 0.0870	 	 0.2905	 	 0.3411	 	 0.0324	 	

1984	 0.8698	 	 0.3644	 	 0.0824	 	 0.3122	 	 0.3571	 	 0.0308	 	

1985	 1.3197	 	 0.4429	 	 0.1067	 	 0.3423	 	 0.3487	 	 0.0346	 	

1986	 1.3003	 	 0.5363	 	 0.1934	 	 0.2730	 	 0.3595	 	 0.0362	 	

1987	 1.2963	 	 0.6057	 	 0.2446	 	 0.3477	 	 0.4342	 	 0.0417	 	

1988	 1.0893	 	 0.4923	 	 0.1411	 	 0.3801	 	 0.4101	 	 0.0439	 	

1989	 0.9030	 	 0.4257	 	 0.1188	 	 0.3050	 	 0.3404	 	 0.0345	 	

1990	 0.9744	 	 0.3426	 	 0.0723	 	 0.2694	 	 0.3374	 	 0.0308	 	

1991	 0.7888	 	 0.4215	 	 0.0873	 	 0.2118	 	 0.2756	 	 0.0320	 	

1992	 1.0562	 	 0.4226	 	 0.1144	 	 0.1613	 	 0.2564	 	 0.0316	 	

1993	 1.0709	 	 0.4662	 	 0.1609	 	 0.1388	 	 0.2266	 	 0.0291	 	
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Table	4	(contd).	Nominal	CPUE	(n	CPUE),	standardized	CPUE	(std	CPUE),	and	
standard	deviation	for	each	region	(late)		

Area	1	 Area2	

year	 nCPUE	 stdCPUE	 SD	 nCPUE	 stdCPUE	 SD	

1994	 1.0966	 	 0.4197	 	 0.0816	 	 0.1325	 	 0.2733	 	 0.0593	 	

1995	 1.0013	 	 0.3577	 	 0.0884	 	 0.1055	 	 0.2073	 	 0.0450	 	

1996	 1.1709	 	 0.4100	 	 0.1212	 	 0.1387	 	 0.3176	 	 0.0738	 	

1997	 1.0700	 	 0.4596	 	 0.1212	 	 0.0956	 	 0.2806	 	 0.0668	 	

1998	 0.9947	 	 0.3565	 	 0.0948	 	 0.0918	 	 0.2804	 	 0.0653	 	

1999	 1.0335	 	 0.3671	 	 0.1022	 	 0.1061	 	 0.2950	 	 0.0701	 	

2000	 1.1436	 	 0.4387	 	 0.1420	 	 0.1340	 	 0.3166	 	 0.0744	 	

2001	 1.0345	 	 0.3968	 	 0.1219	 	 0.1496	 	 0.3488	 	 0.0805	 	

2002	 1.0958	 	 0.3783	 	 0.1202	 	 0.1620	 	 0.3199	 	 0.0695	 	

2003	 0.8821	 	 0.2724	 	 0.0764	 	 0.1486	 	 0.2781	 	 0.0595	 	

2004	 1.0078	 	 0.2758	 	 0.0590	 	 0.2055	 	 0.2468	 	 0.0540	 	

2005	 1.1874	 	 0.2995	 	 0.0642	 	 0.1608	 	 0.2436	 	 0.0570	 	

2006	 1.1851	 	 0.3332	 	 0.0678	 	 0.2202	 	 0.2996	 	 0.0695	 	

2007	 1.1147	 	 0.3854	 	 0.0922	 	 0.2268	 	 0.3336	 	 0.0771	 	

2008	 0.7892	 	 0.2583	 	 0.0503	 	 0.1755	 	 0.3333	 	 0.0797	 	

2009	 1.0327	 	 0.3457	 	 0.0773	 	 0.1702	 	 0.3207	 	 0.0753	 	

2010	 0.9027	 	 0.3151	 	 0.0791	 	 0.2627	 	 0.2509	 	 0.0617	 	

2011	 0.7880	 	 0.3028	 	 0.0874	 	 0.1272	 	 0.2220	 	 0.0543	 	

2012	 0.7942	 	 0.3016	 	 0.0991	 	 0.1300	 	 0.2031	 	 0.0482	 	

2013	 0.7794	 	 0.2919	 	 0.0880	 	 0.1292	 	 0.2052	 	 0.0503	 	

2014	 0.8157	 	 0.3003	 	 0.0874	 	 0.1102	 	 0.2031	 	 0.0490	 	

2015	 0.9795	 	 0.3104	 	 0.0845	 	 0.1811	 	 0.3065	 	 0.0775	 	

2016	 1.0467	 	 0.4285	 	 0.1128	 	 0.2360	 	 0.3045	 	 0.0807	 	

2017	 1.0232	 	 0.5085	 	 0.1387	 	 0.1624	 	 0.2174	 	 0.0554	 	

2018	 1.1394	 	 0.6692	 	 0.2243	 	 0.1635	 	 0.2675	 	 0.0717	 	

2019	 1.0356	 	 0.4896	 	 0.1528	 	 0.1126	 	 0.2657	 	 0.0702	 	

2020	 1.1394	 	 0.4721	 	 0.1447	 	 0.1604	 	 0.3134	 	 0.0860	 	

2021	 1.0180	 	 0.3999	 	 0.1092	 	 0.4972	 	 0.3923	 	 0.1114	 	
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Figure	1.	 Japanese	 longline	operational	data	points	overlapped	with	WCNPO	and	
EPO	boundaries.	The	area	1	highlighted	in	pink	and	area	2	highlighted	in	yellow	are	
the	two	areas	assessed	in	this	study.	
	

Figure	 2.	 Japanese	 long	 line	 fishing	 effort	 measured	 by	 number	 of	 hooks	
(log(hooks))	for	the	area	of	study.	Number	of	hooks	were	summarized	by	decade	and	
1°×1°	grid	resolution.	
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Figure	 3.	Historical	 changes	 in	 nominal	 swordfish	 CPUE	 (number	 of	 sword	 fish	
caught	 /	 1,000	 hooks)	 by	 Japanese	 longline	 fishery	 (1976-2020).	 The	 gray	 area	
denotes	zero	catch	during	the	summarizing	period.	Nominal	CPUE	was	summarized	
by	decade	and	1°×1°	grid	resolution.	

	

Figure	 4.	 Changes	 in	 the	 number	 of	 hooks	 between	 floats	 (HBF)	 for	 Japanese	
longline	fishery	for	each	decade	and	1°×1°	grid	resolution.	HBF	quickly	changes	after	
1990s	and	the	HBF	seems	to	be	associated	with	the	fishing	location.	
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Figure	5.	Spatial	pattern	of	the	branch	line	length	(A)	and	buoy	line	length	(B)	for	
Japanese	longline	fishery.	
	

	

Figure	6.	Decadal	mean	 semi-dress	weight	 (kg)	of	 swordfish	 caught	by	 Japanese	
longline	 fishery	 (1994-2021).	 The	 gray	 area	 denotes	 zero	 catch	 during	 the	
summarizing	period.	Mean	semi-dress	weight	was	summarized	by	decade	and	1°×1°	
grid	resolution.	
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Figure	7.	Posterior	distribution	of	early	period	model	for	Area	1	(1976-1993);	Top:	
fixed	year	effect;	Middle:	fixed	quarter	effect;	Bottom:	random-effect	parameters.	
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Figure	8.	Posterior	distribution	of	late	period	model	for	Area	1	(1994-2021);	Top:	
fixed	year	effect;	Middle:	fixed	quarter	effect;	Bottom:	random-effect	parameters.	
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Figure	9.	Posterior	distribution	of	early	period	model	for	Area	2	(1976-1993);	Top:	
fixed	year	effect;	Middle:	fixed	quarter	effect;	Bottom:	random-effect	parameters.	
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Figure	10.	Posterior	distribution	of	late	period	model	for	Area	2	(1994-2021);	Top:	
fixed	year	effect;	Middle:	fixed	quarter	effect;	Bottom:	random-effect	parameters.	
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Figure	11.	 Standardized	 Japanese	 longline	CPUE.	Left:	 early	 time	period	 (1976	–	
1993).	Right:	late	time	period	(1994	–	2021).	
	

	
Figure	12.	CPUE	prediction	with	and	without	vessel	effect.	 	
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Appendix	A	
Model	Diagnostics	Area1	Early	
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Model	Diagnostics	Area1	Late	
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Model	Diagnostics	Area	2	Early	
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Model	Diagnostics	Area	2	Late	(1994	-	2021)	

	


