

Review of Life History Parameters for Blue Marlin Makaira nigricans¹

Lennon R. Thomas Western Pacific Regional Fishery Management Council and Pacific Islands Fisheries Science Center Honolulu, Hawaii, USA

Robert L. Humphreys, Jr. NOAA NMFS Pacific Islands Fisheries Science Center Honolulu, Hawaii, USA

Yi-Jay Chang Joint Institute for Marine and Atmospheric Research University of Hawaii Honolulu, Hawaii, USA

> Chi-Lu Sun Institute of Oceanography National Taiwan University Taipei, Taiwan

¹Working document submitted to the ISC Billfish Working Group Workshop, 16-23 January 2013, Honolulu, Hawaii, USA. Document not to be cited without author's written permission.

Review of Life History Parameters for Blue Marlin Makaira nigricans

Lennon R. Thomas^a, Robert L. Humphreys, Jr.^b, Yi-Jay Chang^c, and Chi-Lu Sun^d

^a Pacific Islands Fisheries Science Center and Western Pacific Regional Fishery Management Council Honolulu, Hawaii, USA

^bNOAA NMFS Pacific Islands Fisheries Science Center Honolulu, Hawaii, USA

^c Joint Institute for Marine and Atmospheric Research University of Hawaii Honolulu, Hawaii, USA

^d Institute of Oceanography, National Taiwan University Taipei, Taiwan

Abstract

The objective of this working paper (ISC/13/BILLWG-1/12) is to summarize life history parameters for blue marlin (*Makaira nigricans*) for the January 16-23, 2013 ISC Billfish Working Group Intercessional Workshop in Honolulu, HI. This paper will provide a summary of life history information in an accessible format that may be used by stock assessment scientists as input for the upcoming blue marlin stock assessment conducted by the ISC BILLWG. We hope this paper will also help scientists identify gaps in blue marlin life history information. Life history information provided by Uchiyama and Humphreys 2007 and Sun et al. 2012 was included. Additional information found in peer-reviewed articles and gray literature was also included. The life history parameters presented in this review include length-length relationships, length-weight relationships, growth rates, mortality rates, fecundity, and proportion mature at size for blue marlin. The life history parameter compilations are drawn from several widely separated locales in the Pacific Ocean. We have taken this approach because blue marlin is believed to compromise a single stock in the Pacific Ocean (Graves and McDowell 2003).

Table 1: A compliation of weight (kg) on length (cm) and length on weight relationships for Pacific blue marlin (*Makaira nigricans*). W= body weight, GW= body weight after gilled and gutted, PW= body weight without bill, caudal fin, gills, and viscera. EFL= eye to fork length, SFL= anterior tip of bill to fork of tail length, LJFL= lower jaw to fork length.

Weight (kg) on length (cm) relationship	Sex	n	Size range (cm)	\mathbf{r}^2	Reference	Region
$W = 1 \times 10^{-5} EFL^{2.996}$	female	926	100 - 275	0.945	Chen 2002	western Pacific
$W = 2 \times 10^{-5} EFL^{2.883}$	male	666	100 - 220	0.900	Chen 2002	western Pacific
$W = 6 \times 10^{-5} EFL^{2.7002}$	female	257	110 - 250	0.864	Dai 2002	western Pacific
$W = 1 \times 10^{-5} EFL^{2.9763}$	male	418	100 - 195	0.890	Dai 2002	western Pacific
$W = 7.129 e^{0.013 EFL}$	female	105	120 - 350	0.872	Hill 1986	central Pacific
$W = 4.354 e^{0.016 EFL}$	male	213	80 - 230	0.884	Hill 1986	central Pacific
$\mathbf{W} = 5.5565 \text{ x } 10^{-6} \mathbf{EFL}^{3.0888}$	combined	11	167 - 270	-	Kume and Joseph 1969	eastern Pacific
$\mathbf{GW} = 1.0242 \text{ x } 10^{-5} \mathbf{EFL}^{2.9749}$	combined	24	98 - 234	-	Kume and Joseph 1969	eastern Pacific
$W = 1.9034 \text{ x } 10^{-6} \text{ x LJFL}^{3.2842}$	female	3,267	23 - 378.5	0.930	Prager et al. 1994	north Atlantic
$W = 2.4682 \text{ x } 10^{-6} \text{ x } \text{LJFL}^{3.2243}$	male	1,978	23-277	0.910	Prager et al. 1994	north Atlantic
$W = 1.955 \text{ x } 10^{-6} \text{ x } \text{LJFL}^{3.3663}$	combined	5,245	23-378.5	0.940	Prager et al. 1994	north Atlantic
$PW = 4.70 \text{ x } 10^{-6} \text{ LJFL}^{3.11}$	combined	1305	155-352	0.936	Shimose 2009	western Pacific
$\mathbf{W} = 5.0048 \text{ x } 10^{-6} \text{ TL}^{3.0214}$	combined	453	135 - 457	0.950	Skillman and Young 1974	central Pacific
$SFL = 65.4502 \ W^{0.3030}$	female			-	Skillman and Young 1976	central Pacific
$SFL = 56.8780 \ W^{0.3218}$	male			-	Skillman and Young 1976	central Pacific
$W = 1.3 \text{ x } 10^{-6} \text{EFL}^{3.43}$	combined	32	110 - 303	0.985	Uchiyama and Kazama 2003	central North Pacific
$\mathbf{EFL} = 52.0203 \ \mathbf{W}^{0.28337}$	combined	154	10.4 - 381.1 (kg)	0.929	Uchiyama and Kazama 2003	central North Pacific
$\mathbf{W} = 0.00000272228 \mathbf{EFL}^{3.30967}$	combined	154	109.2 - 269.2	0.933	Uchiyama and Kazama 2003	central North Pacific
\log_{10} W = -5.690 + 3.318(\log_{10} EFL)	female	57	154 - 265.1	0.948	Wares and Sakagawa 1974	eastern North Pacific
\log_{10} W = -7.543 + 3.905(\log_{10} LJFL)	female	20	221.1 - 347.3	0.954	Wares and Sakagawa 1974	eastern North Pacific
$W = 0.0000708 LJFJ^{2.60}$	male	102	127 - 234	-	Wilson et al. 1991	central North Pacific
$W = 0.0000001 LJFL^{3.81}$	female	55	131 - 342	-	Wilson et al. 1991	central North Pacific
$W = 2.79 \text{ x } 10^{-6} \text{LJFL}^{3.24}$	combined	2548	150 - 280		Wang et al. 2006	Taiwan waters
$W = 1.427 \text{ x } 10^{-5} EFL^{2.996}$	female	717	100 - 311	0.871	Su et al. 2013	northwest Pacific Ocean
$W = 1.116 \text{ x } 10^{-5} \text{EFL}^{3.033}$	male	1043	100 - 236	0.983	Su et al. 2013	northwest Pacific Ocean

			Size range		
Length (cm) on length (cm) relationship	Sex	n	(cm)	\mathbf{r}^2	Reference
LJFL = 1.071 X EFL + 11.767	female	64	-	0.952	Dai 2002
LFJFL = 1.088 X EFL + 8.895	male	65	-	0.985	Dai 2002
TL = 1.353 X EFL - 4.836	female	52	100 - 425	0.987	Hill 1986
TL = 1.353 X EFL - 4.836	male	120	125 - 240	0.929	Hill 1986
LFFL = 1.094 X EFL + 9.512	female	52	100 - 425	0.997	Hill 1986
LJFL = 1.080 X EFL + 11.780	male	120	125 - 240	0.975	Hill 1986
LJFL = 0.800 X SFL + 15.964	female	52	110 - 570	0.989	Hill 1986
LJFL = 0.786 X SFL + 18.951	male	119	160 - 320	0.940	Hill 1986
LJFL = 1.0831 EFL + 9.0296	female	213	112 - 299	0.970	Su et al. 2005
LJFL = 1.0899 X EFL +7.3668	male	209	107.8-245	0.980	Su et al. 2005
LJFL = 1.0915 X EFL + 7.2158	combined	422	107.8 - 299	0.990	Su et al. 2005
EFL = SFL X 0.810 - 15.785	combined	21	221 - 347	0.997	Wares and Sakagawa 1974
$EFL = LJFL \ge 0.893 - 5.5105$	combined	22	194 - 297	0.979	Wares and Sakagawa 1974
LJFL = 9.550 + 1.080 X EFL	combined	312	100 - 311	0.986	Su et al. 2013

Table 2: Length (cm) on length (cm) relationships for Pacific blue marlin (*Makaira nigricans*). **EFL=** eye to fork length, **LJFL=** lower jaw to fork length, and **SFL=** anterior tip of bill to fork of tail length.

Von Bertalanffy Growth function (VBGF)		Sev	Fitting method	Reference			
L _{inf} (cm)	K (yr ⁻¹)	t ₀	Length type (cm)	ыл	Thung memou	Reference	
371.1	0.285	0.106	SFL	М	Modal analysis of length frequency and	l Skillman and Yong 1976	
659.1	0.116	-0.161	SFL	F	nonlinear least squares		
338.0	0.040	-10.42	EFL	М	VBGF; linear function for back- calculation		
229.7	0.110	-5.21	EFL	М	VBGF; power function for back- calculation	Chen 2001	
420.7	0.030	-9.92	EFL	F	VBGF; linear function for back- calculation	Chell 2001	
283.2	0.090	-4.65	EFL	F	VBGF; power function for back- calculation		
232.8	0.130	-3.58	EFL	М	Multifan	Dai 2002	
312.5	0.110	-2.42	EFL	F	Mulifan	Dai 2002	
263.0	0.483	-1.43	LJFL	F	Back calculation data	Shimoso 2008	
201.0	0.387	-3.21	LJFL	М	Back calculation data	511111086 2008	
210.0	0.004	-54.93	LJFL	С	2- stage growth model (later stage VBGF for individuals >110 days old)	Prince et al. 1991	

Table 3: Summary of age and growth studies of the Pacific blue marlin (*Makaira nigricans*). **EFL**= eye to fork length, **LJFL**= lower jaw to fork length, and **SFL**= anterior tip of bill to fork of tail length. M= male, **F**= female, and **C**= combined sexes.

	Richard (Growth N					
Reference	L _{inf} (cm)	K (yr ⁻ 1)	t ₀	т	Length type (cm)	Fitting method	Sex
Chen 2001	346.9	0.02	-6.96	-0.56	EFL	NLS; Case 1	М
Chen 2001	333.4	0.01	-1.78	-1.65	EFL	NLS; Case 2	М
Chen 2001	501.8	0.03	-9.11	-0.11	EFL	NLS; Case 1	F
Chen 2001	421.8	0.01	-1.76	-1.15	EFL	NLS; Case 2	F

Table 4: Summary of age and growth studies of the Pacific blue marlin (*Makaira nigricans*). **EFL**= eye to fork length in cm, **NLS**= non-linear least squares, **Case 1**= linear function for back-calculation, and **Case 2**= power function for back-calculation.

Table 5: Reported size at 1st maturity and 50% maturity for the Pacific blue marlin (*Makaira nigricans*). Size at maturity appears to vary across region. The relationship between the fraction of mature individuals at size is reported by Sun et al. (2009) as: $P_f = 1/\{1+e^{-\ln(19)[(EFL-179.76)/(194.2-179.76)]}\}$ for females and $P_m = 1/\{1+e^{-\ln(19)[(EFL-130)/(130.13-130)]}\}$ for males.

Reported maturity	l size at 50% (EFL, in cm)	Location	Reference	
male	female			
131.00	179.76	Taiwan	Sun et al.2009	
No data	178.80	Yonaguni Island	Shimose et al. 2009	

Table 6: Natural mortality estimates for Pacific blue marlin (*Makaira nigricans*). **EFL**= eye to fork length, **LJFL**= lower jaw to fork length, and **SFL**= anterior tip of bill to fork of tail length. **M**= male, **F**= female, and **C**= combined sexes. Model 1 =fit of the von Bertalanffy growth model by the least squares method to lengths of fish of assumed age and Model 2 =fit of the von Bertalanffy growth model by the least squares method to lengths, using data on growth increment in known time intervals but making no assumptions about absolute age.

Natural mortality				K (yr		Model as described in Skillman &		
estimate (yr ⁻¹)	Sex	Method	L _{inf} (cm)	1)	Mean SST °C	Yong (1976)	Age Groups Included	Reference
0.53	М	Murphy and Sakagawa (1977)	276.0 (EFL)	0.285	Not applicable	Not applicable	Unspecified	Boggs (1989)
0.21	F	Murphy and Sakagawa (1977)	505.0 (EFL)	0.116	Not applicable	Not applicable	Unspecified	Boggs (1989)
0.38	М	Pauly (1980)	371.1 (SFL)	0.285	26	Model 1	All age groups	Hinton (2001)
0.81	М	Pauly (1980)	282.3 (SFL)	0.815	26	Model 2	All age groups	Hinton (2001)
0.41	М	Pauly (1980)	368.0 (SFL)	0.315	26	Model 1	All age groups with more than 2 individuals	Hinton (2001)
0.63	М	Pauly (1980)	298.8 (SFL)	0.560	26	Model 2	All age groups with more than 2 individuals	Hinton (2001)
0.18	F	Pauly (1980)	659.1 (SFL)	0.116	26	Model 1	All age groups	Hinton (2001)
0.14	F	Pauly (1980)	807.8 (SFL)	0.091	26	Model 2	All age groups	Hinton (2001)
0.19	F	Pauly (1980)	626.6 (SFL)	0.123	26	Model 1	All age groups with more than 2 individuals	Hinton (2001)
0.25	F	Pauly (1980)	540.2 (SFL)	0.175	26	Model 2	All age groups with more than 2 individuals	Hinton (2001)
0.08	F	Pauly (1980)	1248.1 (SFL)	0.048	26	Model 1	Same age groups as males with more than 2 individuals	Hinton (2001)
0.14	F	Pauly (1980)	875.2 (SFL)	0.086	26	Model 2	Same age groups as males with more than 2 individuals	Hinton (2001)
0.253	М	Pauly (1980)	232.8 (EFL)	0.131	25	Not applicable	Unspecified	Dai (2002)
0.209	F	Pauly (1980)	312.5 (EFL)	0.111	25	Not applicable	Unspecified	Dai (2002)
0.38	С	MULTIFAN-CL				Not applicable	Unspecified	Kleiber et al. (2003) Pine et al.
0.41	С	Pauly (1980)	244.0 (LJFL)	0.28	26	Not applicable	Unspecified	(2008)

Figure 1: Standard von Bertalanffy growth curves for female Pacific blue marlin (*Makaira nigricans*) as estimated by different studies. Chen 2001 used both the linear function and power function for back calculation (both are shown).

Figure 2: Standard von Bertalanffy growth curves for male Pacific blue marlin (*Makaira nigricans*) as estimated by different studies. Chen 2001 used both the linear function and power function for back calculation (both are shown).

Figure 3: The proportion of male and female Pacific blue marlin (*Makaira nigricans*) that are mature as a function of eye to fork length as estimated by Sun et al. 2009. The circles represent estimated age at maturity for males and females at various locations. The size at first maturity at Yonguni Island was reported by Shimose et al. 2009, in Taiwan it was reported by Sun et al. 2009, in the eastern Pacific it was reported by Nakano and Bayliff 1992, and in the western Pacific reported by Nakamura 1985.

Figure 4: Predicted fecundity as a function of eye to fork length for the Pacific blue marlin (*Makaira nigricans*) reported by Sun et al. 2009; batch fecundity = $3.29 \times 10^{-12} \text{EFL}^{5.31}$.

Figure 5: Relationship of eye fork length (EFL in cm) to weight (W in kg) for female Pacific Blue marlin (*Makaira nigricans*). Length-weight relationships reported by Chen 2002, Dai 2002, and Hill 1986. For equations see Table 1.

References

- Boggs CH. 1989. Vital rate statistics for billfish stock assessment. In: Planning the future of billfishes, Part 1. Stroud, R.H. (ed.) National Coalition for Marine Conservation. Pp. 284-319.
- Chen BJ. 2001. Age and growth of the blue marlin, *Makaira mazara*, in the western Pacific Ocean. M.S. Thesis (advisor: CL Sun), National Taiwan University, Taipei, 76 pp.
- Dai CY. 2002. Estimates of age, growth and mortality of blue marlin, Makaira mazara in the western Pacific using the length-based MULTIFAN method. M.S. Thesis (advisor (CL Sun), National Taiwan University, Taipei, 80 pp.
- Graves JE, McDowell JR. 2003. Stock structure of the world's istiophorid billfishes: a genetic perspective. Mar and Freshwater Res 54: 287-298.
- Hill KT. 1986. Age and growth of the Pacific blue marlin, Makaira nigricans: a comparison of growth zones in otoliths, vertebrae, and dorsal and anal fin spines. M.S. Thesis, California State University, Stanislaus, 107 pp.
- Hinton MG. 2001. Status of blue marlin in the Pacific Ocean: In: Stock Assessment Report 1, Status of Tuna and Billfish Stocks in 1999. M.G. Hinton (ed.) La Jolla, CA: Inter-Am. Trop. Tuna Comm, pp. 284-319.
- Kleiber P, Hinton MG, Uozumi Y. 2003. Stock assessment of blue marlin (*Makaira nigricans*) in the Pacific using MULTIFAN-CL. Mar Freshw Res 54(4):349-360.
- Kume S, Joseph J. 1969. Size composition and sexual maturity of billfishes caught by the Japanese longline fishery in the eastern Pacific Ocean east of 130 W. Far Seas Fish Res Lab, Bull, 2:115-162.
- Miyabe N, Bayliff WH, 1987. A review of the Japanese longline fishery for tunas and billfishes in the eastern Pacific Ocean, 1971-1980. Inter-Amer. Trop. Tuna Comm., Bull., 19(1): 1-163.
- Muphy TC, Sakagawa GT. 1977. A review and evaluation of natural mortality rates of tunas. Inter. Comm. Cons. Atlan. Tunas, Coll. Vol. Sci. Pap., 6(1):117-123
- Nakamura I. 1985. Billfishes of the world. An annotated and illustrated catalogue of marlins, sailfishes, spearfishes and swordfishes known to date. FAO Fish. Syn. 125, 5:65.
- Nakano H, Bayliff WH. 1992. A review of the Japanese longline fishery for tunas and billfishes in the eastern Pacific Ocean, 1981-1987. Inter-Amer. Trop. Tuna Comm., Bull., 20(5):183-355.
- Pauly D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperatures in 175 fish. Cons. Inter. Explor. Mer, Jour., 39(2): 175-192.
- Pine WE, III, Martell SJD, Jensen OP, Walters CJ, Kitchell JF. 2008. Catch-and-release and size limit regulations for blue, white, and striped marlin: the role of postrelease survival in effective policy design. Can J Fish Aquat Sci 65(5):975-988.

- Prager MH, Prince ED, Lee DW. 1995. Empirical length and weight conversion equations for blue marlin, white marlin, and sailfish from the north Atlantic Ocean. Bull Mar Sci 56: 201-210.
- Prince ED, Lee DW, Swelfel JR. 1991. Estimating age and growth of young Atlantic blue marlin *Makaira nigricans* from otolith microstructure. Fish Bull 89: 441-459.
- Shimose T. 2008. Ecological studies from the view point of fisheries resources on blue marlin, *Makaira nigricans*, in the North Pacific Ocean. A Doctoral Dissertation for the Graduate School of Engineering and Science, University of the Ryukyus, 143pp.
- Shimose T, Fujita M, Yokawa K, Saito H, Tachihara K. 2009. Reproductive biology of blue marlin *Makaira nigricans* around Yonaguni Island, southwestern Japan. Fish Sci 75(1): 109-119.
- Skillman RA, Yong MY. 1974. Length-weight relationships for six species of billfishes in the central Pacific Ocean. US Nat. Mar. Fish. Serv., NOAA Tech. Rep. NMFS SSRF-675 (2), 126-137.
- Skillman RA, Yong MY. 1976. von Bertalanffy growth curves for striped marlin, *Tetrapturus audax*, and blue marlin, *Makaira nigricans*, in central north Pacific Ocean. Fish Bull 74(3): 553-566.
- Su NJ, Sun CL, Yeh SZ, Chian WC, Wang SP, and Liu CH, 2005. LJFL and EFL relationships for the billfishes caught by the Taiwanese offshore and coastal fisheries. Working document prepared for the joint session of the Marlin and Swordfish Working Groups of the Interim Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean, Shimizu, Shizuoka, Japan, August 29 – September 2 2005.
- Su NJ, Sun CL, Punt AE, Yeh SZ, Chiang WC, Chang YJ, Chang HY. 2013. Effects of sexual dimorphism on population parameters and exploitation ratios of blue marlin (Makaira nigricans) in the northwest Pacific Ocean. Aquat Living Resour doi: 10.1051/alr/2012039. Published online by Cambridge University Press on January 23, 2013.
- Sun CL, Chang YJ, Tszeng CC, Yeh SZ, Su NJ. 2009. Reproductive biology of blue marlin (*Makaira nigricans*) in the western Pacific Ocean. Fish Bull 107(4):420-432.
- Uchiyama JH, Kazama TK. 2003. Updated weight-on-length relationships for pelagic fish caught in the central North Pacific Ocean and bottomfishes from the Northwestern Hawaiian Islands. National Marine Fisheries Service, Pacific Islands Fisheries Science Center, NOAA. Administrative Report H-03-01, 46 pp.
- Uosaki K, Bayliff WH. 1999. A review of the Japanese longline fishery for tunas and billfishes in the eastern Pacific Ocean, 1988-1992. Inter-Amer. Trop. Tuna Comm., Bull., 21:273-488.
- Wang SP, Sun CL, Yeh SZ, Chiang WC, Su NJ, Chang YJ, Liu CH. 2006. Length distributions, weight-length relationships, and sex ratios at lengths for the billfishes in Taiwan waters. Bull Mar Sci 79: 865-869.
- Wares PG, Sakagawa GT. 1974. Some morphometrics of billfishes from the eastern Pacific Ocean. U.S. Nat. Mar. Fish. Serv., NOAA Tech Rep. NMFS SSRF-675 (2): 107-120.
- Wilson CA, Dean JM, Prince ED, Lee DW. 1991. An examination of sexual dimorphism in Atlantic and Pacific blue marlin using body weight, sagittae weight, and age estimates. J Exp

Mar Biol Ecol 151:209-225.