

Estimated stock dynamics of North West Pacific Striped-Marlin by Using a Stock Production Model Incorporating Covariates (ASPIC)

Minoru Kanaiwa¹, Ai Kimoto² and Kotaro Yokawa²

¹ Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
² National Research Institute of Far Seas Fisheries, Shimizu, Shizuoka, Japan

Email: m3kanaiw@bioindustry.nodai.ac.jp

Working document submitted to the ISC Billfish Working Group Workshop, 6-16 December 2011, Honolulu, Hawaii, USA. Document not to be cited without author's written permission.

Summary

The analysis of stock dynamics for striped marlin in North West Pacific Ocean by using A Stock Production Model Incorporating Covariates (ASPIC) was provided. Time series of 5 stock abundances and Catch (JP DW LL, JP CW LL, JP Drift net, TW LL and USA) was used for analysis. We found negative correlation between JP DW LL, JP CW LL and USA V.S. JP Drift net and TW LL. Thus, three scenarios which have different weighting factors were constructed. Under the equal weighted model, estimated total stock biomass decreased from 2.5 times of Bmsy to 0.8 times Bmsy, smoothly and estimated fishing intensity increased from 1.4 times of Fmsy to 2 times Fmsy. The result with down-weighting to JP DW LL, JP CW LL and USA LL becomes optimistic, and the result with down-weighting to JP Drift net and TW LL becomes pessimistic. In conclusion, there are two sets of time series whose annual trends are contradictory to each other. Thus, estimated biomass is changeable by setting of weighting factors for each time series. These time series of stock indices would reflects different aspects of the stock.

Introduction

For North Pacific Striped Marlin assessment, it was agreed to use Stock Synthesis as base model to estimate stock abundance. To evaluate the result, it is useful to compare with other results by using models which have different assumption (Anonymous 2011). A Stock Production Model Incorporating Covariates (ASPIC) can fit the surplus production model which is different assumption in Stock Synthesis. The results by ASPIC to evaluate Stock Synthesis's results are provided in this paper.

Material & Method

Catch and standardized CPUE data between 1952 and 2009 which were provided in ISC Billfish Working group workshop, 2011-02 were used for analyze (Anonymous 2011). Because ASPIC can treat only 10 series of catch and CPUE data as maximum number of series, we summarize data to 5 series, i.e. Japanese offshore longline, Japanese coastal longline, Japanese drift net, Taiwanese longline and U.S. longline (Table 1). The catches of other fisheries were allocated to those 5 fisheries which are supposed to have similar selectivity pattern (Table 2). To make the effects of the limitation of number of series and the differences in length distribution pattern between series on the results of ASPIC minimize, the single area stratification scenario were used and single time series of CPUE of Japanese offshore and distant-water longliners were used in the analysis. All initial values of estimated parameters, i.e. starting relative biomass (B1/K), maximum sustainable yield (MSY), Maximum population biomass (K) and catchabilities for each fishery (q1-q5), which area generated by ASPIC are shown in Table 3.

Result & Discussion

There were several correlations between some stock indices (Figure. 1). Between JP dw LL and JP cw LL, JP dw and HI LL, there are positive correlations. Between JP dw LL and JP drift net, JP dw LL and TW LL, there are negative correlations. Estimated B / Bmsy and F / Fmsy are shown in Figures 2 - 4. In Figure2 and 5 and table 4, the results where all time series of fisheries set same weight (=1) to estimate are shown. The initial biomass is about 2.4 times larger than Bmsy and the initial F is about 1.8 times larger than than Fmsy. F increase slightly over the years and biomass decrease slightly, also. As a result, the biomass becomes about 90% of Bmsy in 2009.

In Figures 3, the results where for JP dw LL, JP cw LL and HI LL, lower weights (= 0.01) are set than JP drift net and TW (= 1) is shown. Then the trend of biomass becomes more moderate than first scenario. In Figure 4, the results where for JP dw LL, JP cw LL and HI LL, higher weights (=1) are set than JP drift net and TW (= 0.01) is shown. In this scenario, biomass decrease more rapidly than first scenario.

In conclusion, there are two sets of time series which are contradictory to each other. Thus, estimated biomass is changeable by setting of weighting factors for each time series. Thus, estimated biomass is changeable by setting of weighting factors for each time series. These time series of stock indices would reflects different aspects of the stock, but the present study successfully produced results to attain compromise of these contradicting time series and this result seems more realistic than the ones obtained using one of two contradicting time series of inputs in a relative sense. The production model used in this study does not account for the historical size information, and length based stock analysis model such as the Stock Synthesis would have more complicating problems if size information is not so informative under the situation that the some input CPUE series are contradicting each other.

References

Anonymous, Report of the Billfish Working Group Workshop 2011/02.

year	JP dw LL	JP cw LL	JP drift	TW LL	<u>HI LL</u>
1952	0.030				
1953	0.014				
1954	0.024				
1955	0.037				
1956	0.033				
1957	0.026				
1958	0.044				
1959	0.061				
1960	0.034				
1961	0.031				
1962	0.001				
1963	0.044				
1964	0.062				
1904	0.062				
1966	0.047			0.005	
1967	0.041			0.085	
1968	0.033			0.074	
1969	0.045			0.086	
1970	0.053			0.066	
1971	0.046			0.083	
1972	0.033			0.102	
1973	0.030			0.105	
1974	0.023			0.060	
1975	0.019			0.066	
1976	0.016			0.122	
1977	0.009		0.286	0.105	
1978	0.010		0.188	0.128	
1979	0.020		0.146	0.143	
1980	0.023		0.149	0.121	
1981	0.015		0.132	0.128	
1982	0.013		0.071	0.200	
1983	0.011		0.069	0.066	
1984	0.016		0.099	0.061	
1985	0.010		0.096	0.001	
1986	0.021		0.099		
1980	0.029		0.109	0.030	
				0.030	
1988	0.023		0.138	0.070	
1989	0.022		0.132	0.076	
1990	0.013		0.162	0.063	
1991	0.013		0.173	0.113	
1992	0.018		0.159	0.064	
1993	0.030		0.206	0.127	
1994	0.023	0.027			
1995	0.022	0.041		0.121	
1996	0.018	0.024		0.095	0.739
1997	0.017	0.033		0.079	0.636
1998	0.029	0.042		0.088	0.644
1999	0.022	0.019		0.091	0.488
2000	0.013	0.019		0.090	0.255
2001	0.013	0.022		0.073	0.761
2002	0.010	0.021		0.119	0.327
2003	0.009	0.020		0.117	0.932
2004	0.010	0.023		0.157	0.443
2005	0.006	0.017		0.152	0.409
2006	0.005	0.014		0.111	0.588
2000	0.003	0.014		0.101	0.142
2007	0.004	0.015		0.092	0.345
2008	0.003	0.015		0.092	0.345
2009	0.004	0.010		0.001	0.170

Table 1 CPUE series which are used for analysis

		JP dw LL	JP cw LL	JP drift	TW LL	HI LL
combine	a d		JP other	JP	all TW,	
fishery	eu		LL, net,	other,squi	KOR,	
nsnery			trap	d drift, bait	WCPFC	
year						
19	952	2901.1	926.4	1359.9	0.0	187.2
19	953	2137.6	182.0	819.3	0.0	177.7
19	954	3053.5	135.0	1005.0	0.0	98.3
19	955	3075.1	170.5	895.9	0.0	115.3
	956	3726.7	193.2	1862.4	0.0	106.7
	957	3160.0	216.8	2360.9	0.0	117.7
	958	4101.4	418.3	2776.2	0.0	167.9
	959	4129.1	289.4	3059.8	0.0	142.5
	960	3746.9	274.7	1767.8	0.0	106.2
	961	3817.9	369.7	1597.6	0.0	109.2
	962	4289.1	379.7	1650.8	0.0	133.8
	963	3747.5	202.5	1787.3	0.0	161.1
	964	6290.9	139.3	2247.6	0.0	241.5
	965	4493.6	127.0	2687.0	0.0	185.1
	966	2961.4	344.0	1340.0	0.0	159.3
	967 968	4503.4 4358.5	246.0 320.0	1435.0 953.0	591.0 541.0	191.5 241.9
	968 969	4358.5	715.0	953.0 2559.0	765.0	158.9
	909 970	6181.0	930.0	976.0	694.8	163.6
	971	4080.6	1014.0	1964.0	596.0	81.5
	972	2157.7	1058.0	1160.0	527.5	69.4
	973	3075.1	902.0	3815.0	723.0	52.4
	974	2569.3	466.0	3797.0	810.4	74.4
	975	1676.8	430.0	7114.0	909.8	93.2
	976	1610.2	329.0	4095.0	535.0	109.4
	977	1411.9	375.0	4867.0	781.2	46.7
	978	1830.6	492.0	5917.0	717.5	73.3
19	979	3034.0	454.2	2991.0	605.9	98.8
19	980	3014.3	692.1	3923.0	448.4	131.7
	981	1996.3	364.1	4315.0	645.8	157.2
19	982	1621.8	347.0	2943.0	603.0	185.9
19	983	1397.3	489.0	2535.0	828.3	216.6
19	984	2237.2	539.0	2908.0	1330.7	247.4
19	985	3096.3	818.0	3013.0	745.3	274.0
19	986	3994.7	1071.0	4024.0	388.9	303.7
	987	2602.9	1295.0	2299.0	670.7	276.7
	988	4374.0	822.0	2816.0	755.0	482.6
	989	2849.3	1141.0	2154.0	448.6	586.8
	990	1716.9	1194.0	2424.0	445.0	483.7
	991	2344.5	1257.0	1779.0	636.6	549.9
	992	2567.6	1329.0	1435.0	482.8	545.4
	993	3103.3	1753.0	1507.0	427.9	532.5
	994	2377.3	1360.0	1751.0	405.4	363.3
	995	2440.4	1909.0 1880.0	1187.0	259.8	738.2
	996 997	1518.7 1198.0	1437.0	815.0 942.0	307.4	515.1
			2012.0	942.0	498.4 1009.9	468.0
	998 999	1312.7 1402.6	1582.9	1282.0	680.5	499.0 451.1
	000	902.1	1157.9	1318.0	889.1	233.1
	001	778.2	1387.9	1263.0	510.0	415.4
	002	585.1	881.1	1474.0	624.6	232.0
	02	841.7	886.5	1225.0	578.3	759.3
	004	561.3	1025.9	1407.0	557.6	460.0
	005	461.3	696.5	1284.0	453.6	733.0
	006	479.2	570.3	1254.0	598.9	700.0
	007	291.0	886.3	1028.0	630.2	348.3
	008	359.3	645.3	1373.0	804.4	476.7
	009	127.0	643.5	894.0	524.7	352.1

Table 2 Catch series which are used for analysis. Unit is MT

	initial value	lower boundary	upper boundary
B1/K	0.5	-	-
MSY	6404.37	640.437	128087
К	64043.7	6404.37	1280870
q1: JP dw LL	1.8949E-06	-	-
q2: JP cw LL	3.9216E-06	-	-
q3: JP drift	8.3556E-06	-	-
q4: TW LL	2.6805E-05	-	-
q5: HI LL	1.7444E-04	_	-

Table 3 Initial values for estimated parameters

Table 4 estimated parameters

	estimated value
B1/K	0.8399
MSY	1345
К	560600
q1: JP dw LL	6.963E-08
q2: JP cw LL	1.146E-07
q3: JP drift	4.910E-07
q4: TW LL	3.658E-07
q5: HI LL	2.288E-06
Bmsy/K	0.35
γ	-27.73
n	0.91

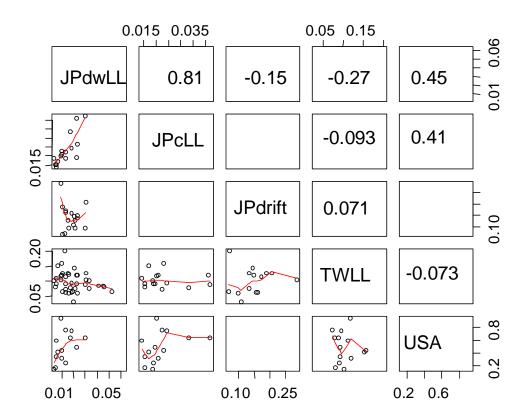


Figure. 1 Correlation between each stock indices.

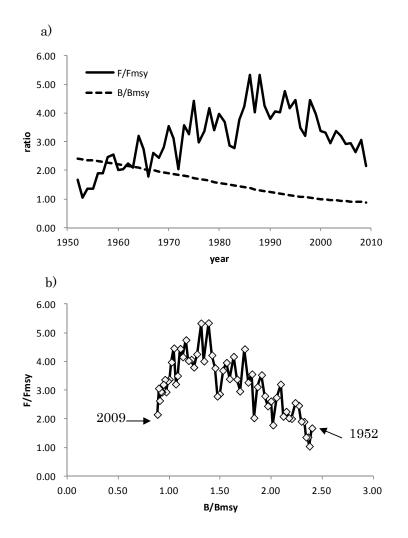


Figure. 2 Time series of estimated F / Fmsy and B / Bmasy a) and scatter plot of these two. b) with same weight for 5 CPUE and catch time series.

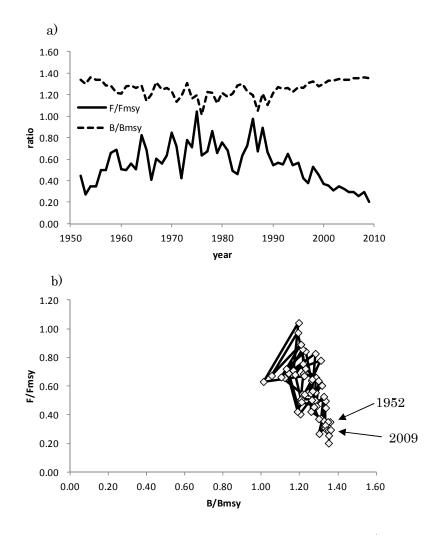


Figure. 3 Time series of estimated F / Fmsy and B / Bmasy a) and scatter plot of these two. b) set higher weight (1) for JP drift net and TW CPUE and catch time series than other three ones (0.01).

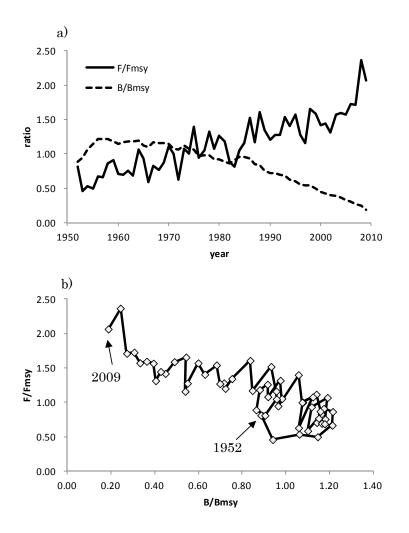


Figure. 4 Time series of estimated F / Fmsy and B / Bmasy a) and scatter plot of these two. b) set higher weight (1) for JP dw LL, JP cw LL and HI LL CPUE and catch time series than other two ones (0.01).

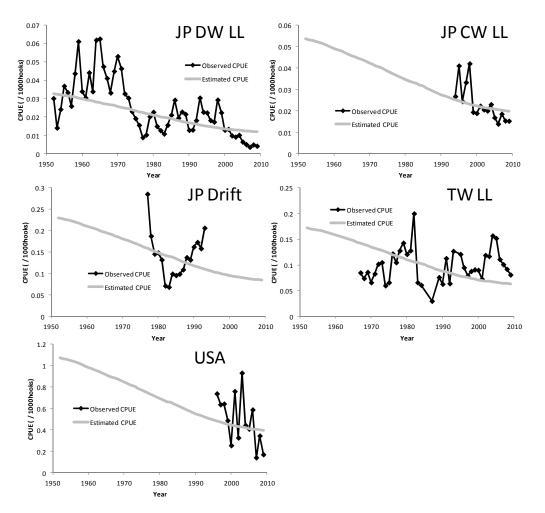


Figure. 5 Input and Estimated CPUE for each fleets.