

# Age Structured Stock Assessment of North Pacific Swordfish (*Xiphias gladius*) with Stock Synthesis under a Two Stock Scenario

## Dean Courtney NOAA/NMFS PIFSC 2570 Dole St., Honolulu, HI 96822-2396

## Kevin Piner NOAA/NMFS PIFSC 2570 Dole St., Honolulu, HI 96822-2396



Working document submitted to the ISC Billfish Working Group Workshop, 15-22 April 2010, Hakodate, Hokkaido, Japan. Document not to be cited without author's written permission.

## Age Structured Stock Assessment of North Pacific Swordfish (*Xiphias gladius*) with Stock Synthesis under a Two Stock Scenario

Dean Courtney and Kevin Piner

NOAA Fisheries, Pacific Islands Fisheries Science Center, 2570 Dole St., Honolulu, HI 96822

#### **Abstract**

This report summarizes Stock Synthesis model runs for a North Pacific Swordfish (Xiphias gladius) stock assessment under a two stock scenario. The stock structure assumed for this assessment was two stocks (Sub-Area 1 and Sub-Area 2) with a diagonal boundary from Baja, California (25°N x 110°W) to approximately 170°W at the equator and no mixing between Sub-Areas. Model structure was based on preliminary agestructured stock assessments of North Pacific swordfish under a single stock scenario and a two stock scenario presented separately. Model results were compared to those from Bayesian production (BSP) models fit to the same data. The Stock Synthesis model for Sub-Area 1 appeared to adequately estimate selectivity for the major fisheries with some caveats, to fit CPUE time-series reasonably well, and to adequately fit length compositions from the major fisheries with some caveats. In contrast, the Stock Synthesis model for Sub-Area 2 had a relatively poor fit to the limited length frequency data and estimates of female spawning biomass and age-0 recruitment were highly uncertain. The Stock Synthesis model for Sub-Area 2 was also sensitive to the minor changes made to the model since the preliminary assessment and to the addition of updated catch data. Together, these results suggest that Stock Synthesis model results may be more reliable for Sub-Area 1 than for Sub-Area 2. Both models were consistent with model results from BSP in that ending year 2006 female spawning biomass was estimated above spawning biomass at maximum sustainable yield (MSY) and 2006 fishing mortality (F) was estimated below F at MSY.

## 1. Introduction

This report summarizes Stock Synthesis (SS) model runs for a North Pacific Swordfish (*Xiphias gladius*) stock assessment under a two stock scenario (Figure 1). Model structure was based on preliminary age-structured stock assessments of North Pacific swordfish under a single stock scenario (Courtney and Piner 2009a and 2009b) and a two stock scenario (Courtney and Piner 2009c). Model results were compared to those from Bayesian production (BSP) models fit to the same data (Brodziak and Ishimura 2009, BILL-WG 2009b, Brodziak 2010).

## 2. Methods

#### 2.1 Stock Structure

The stock structure assumed for this assessment was a two-stock scenario (Figure 1) with no mixing between sub areas (BILL-WG 2008, BILL-WG 2009a, BILL-WG 2009b, BILL-WG 2009c). Sub areas were separated by a diagonal boundary from Baja California (25°N x 110°W) to approximately 170°W at the equator (Figure 1). The boundary followed a stair step pattern modified from Ichinokawa and Brodziak (2008). The southern boundary of Sub-Area 1 in the western and central Pacific Ocean was at the equator. The southern boundary of Sub-Area 2 in the eastern Pacific Ocean was at 20°S (Figure 1).

For Sub-Area 1, catch, CPUE, and length were incorporated into the assessment model using a regional spatial stratification modified from Sun et al. (2009) which included five regions (1-1, 1-2, 1-3, 1-4, 1-5) (BILL-WG 2009a, BILL-WG 2009b) (Figure 2). The rational for incorporating regional structure within Sub-Area 1 was that a smaller spatial scale more accurately reflected regional differences in catch at length in Stock Synthesis. The SS model structure for Sub-Area 1 was not spatially explicit; instead, SS modeled each fishery relative to the global population. An assumption was that all fisheries within a region sampled the same subset of the total stock so that they had the same apparent selectivity relative to the total stock. Another assumption was that movement between regions was sufficiently high so that the effects of catch in one region were instantaneously diffused among all other regions. Homogeneity in recruitment across regions was also assumed.

Sub-Area 2, consisted of one region (Figure 2).

## 2.2 Biological Parameters

For this analysis, independently estimated swordfish life history parameters from the Central North Pacific were input into Stock Synthesis as fixed parameters (Table 1). Length-at-age growth parameters (cm of eye-fork length), maximum age (TMAX y), and max eye fork length (cm) were taken from DeMartini et al. (2007), and Uchiyama and Humphreys (2007). Length-weight relationship for pooled sexes (cm of eye fork length, kg) were taken from Uchiyama et al. (1999), and Uchiyama and Humphreys (2007). Maturity probability at length p(L) in cm of eye fork length was taken from DeMartini et al. (2000). Combined values for von Bertalanffy growth parameters and maturity probability were not available from DeMartini et al. (2000). As a result, combined values for von Bertalanffy growth parameters and maturity probability were estimated here by fitting length-at-age growth models and maturity-at-length models to the sex-combined data in Excel and minimizing the sum of squared differences between observed and expected values (Table 1).

Estimates of natural mortality were linked to life history of swordfish from the Central North Pacific Ocean (BILL-WG 2009a) (Tables 2 and 3). Natural mortality estimates were obtained by taking the average of 4 age-independent estimates of M and 1 age-dependent estimate of M from (Brodziak 2009). Age-independent estimates of M

followed methods from Hoenig (1983), Alverson and Carney (1975), Pauly (1980), and Beverton-Holt invariant 2 (Jensen 1996). Age-dependent estimates of M followed methods from the Lorenzen (1996) tropical system estimator. Separate estimates were made for female and male swordfish. Estimates for females and males combined were obtained as the average of male and female natural mortality rates at a quarterly time step.

Life history data were compiled separately for females (Table 4), males (Table 5) and females and males combined (Table 6). However, for this assessment, a single sex model was implemented because sexually specific length data were limited. Sex ratio data for Japan distant water longline fisheries were only available from training vessels which did not fish in the same location as the commercial fishery. As a result, the BILL-WG recommended not incorporating Japan distant water longline fisheries sex ratios in this assessment (BILL-WG 2009b). Sexually specific length composition data were only available for US Hawaii Longline (Brodziak and Courtney 2009, Courtney et al. 2009, Courtney and Fletcher 2009). Sexually specific length frequency data were limited and preliminary analysis indicated that the stock synthesis model was not sensitive to the addition of the limited sexually specific length frequency data available from US Hawaii Longline (Courtney and Piner 2009a). As a result, the BILL-WG recommended that a single sex model was more parsimonious (BILL-WG 2009b). Preliminary fits to length frequency were poor (BILL-WG 2009b), and Pacific swordfish growth rates during the first year are very high (DeMartini et al. 2007). As a result, a quarterly time step was implemented for this assessment in an effort to improve model fits to length frequency data.

## 2.3 Catch, Length, and CPUE

Sub-Area 1 included 23 fisheries, 9 time series of length frequency, and 3 time series of standardized CPUE (Tables 7.1, 8.1, and 9.1). Sub-Area 2 included 5 fisheries, 1 time series of length frequency, and 2 time series of standardized CPUE (Tables 7.2, 8.2, and 9.2). Catch and CPUE data were the same as compiled for a Bayesian production model (Courtney and Wagatsuma 2009, BILL-WG 2009c) (Figures 3.1 and 3.2), except that catch data for Sub-Area 2 (Figure 3.2) were updated at the BILL-WG (2009c) (Appendix A). Length data were compiled separately for Stock Synthesis (Courtney and Fletcher 2009).

For Sub-Area 1, catch for all Japan fleets (F1-F16) and U.S. Hawaii Longline (F29) were available at a quarterly time step (Jan-March, April-June, July-September, and October-December) (Table 7.1). Annual catch for Chinese Taipei Distant Water Longline (F19-F25) and Korea Longline (F26 and F27) were apportioned to quarters in the same ratios as Japan Offshore + Distant Water Longline catch in the same region (Table 7.1). Annual catches for US California Gillnet (F30), US California Longline (F31), and US California Other + Unknown (F32) were assigned to quarter four (Q4) which was consistent with the seasonal timing of swordfish catch (Ito and Childers 2008).

For Sub-Area 2, catch for Japan Offshore + Distant Water Longline (F1) was available at a quarterly time step (Jan-March, April-June, July-September, and October-December) (Table 7.2). Annual catch for Chinese Taipei Longline (F2), Korea Longline (F3), and Spain Longline (F4) were apportioned to quarters in the same ratios as Japan Offshore + Distant Water Longline catch (F1) (Table 7.2). Annual catch for Mexico All Gears (F5) was assigned to Q4 (Table 7.2) which was consistent with the seasonal timing of swordfish catch (Ito and Childers 2008). The Mexico swordfish longline fleet operated in Mexican waters from September-October to February, and swordfish catches declined after February and were very scarce in the summer months of July and August (Fleischer et al. 2009). The seasonal timing of Mexico catch appeared to differ somewhat from that of Japan Offshore + Distant Water Longline in Sub-Area 2 (Table 7.2).

For Sub-Area 1, regionally stratified length frequency data were available for 9 combinations of fleets and regions (F1, F2, F3, F4, F5, F7, F12, F29, and F30) (Table 8.1). Because of limited sample size, quarterly length frequency data were only incorporated for Japan Offshore + Distant Water Longline (F1, F2, F4), US Hawaii Longline (F29), and US California Gillnet (F30) (Table 8.1). Annual length frequency data were incorporated for Japan Offshore + Distant Water Longline (F3 and F5), Japan Driftnet (F7), Japan Other, Primarily Harpoon (F12) and assigned to the quarter with most catch (Tables 7.1 and 8.1).

For Sub-Area 2, length frequency data were only available for Japan Offshore + Distant Water Longline (F1) (Table 8.2). Length frequency data were available at a quarterly resolution.

For Sub-Area 1, standardized time-series of CPUE were available for three fleets (S1, S8, and S15) (Table 9.1). Japan Offshore + Distant Water Longline CPUE was assigned to quarter 1 (Q1) based on the proportion of Japan Offshore + Distant Water Longline catch (mt) from 1990 - 2007 in Q1 (50%), Q2 (21%), Q3 (10%), Q4 (20%) (Tables 7.1 and 9.1). Chinese Taipei Distant Water Longline swordfish catch occurred primarily in region 1-4, and as a result, Chinese Taipei Distant Water Longline CPUE (S8) was assigned to Q2 based on the proportion of Japan Offshore + Distant Water Longline catch (mt) in region 1-4 (F4) by quarter from 1990 – 2007 Q1 (19%), Q2 (43%), Q3 (27%), Q4 (11%) (Tables 7.1 and 9.1). Hawaii longline shallow-set CPUE (S15) was assigned to Q2 based on the proportion of Hawaii longline catch (mt) (F29) by quarter from 1990 - 2007 Q1 (35%), Q2 (40%), Q3 (11%), Q4 (14%) (Tables 7.1 and 9.1).

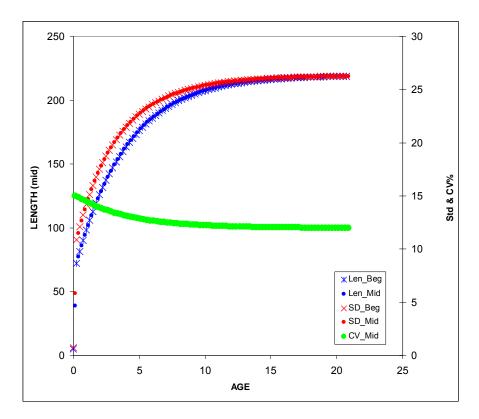
For Sub-Area 2, Japan Offshore + Distant Water Longline CPUE (S1) and Chinese Taipei Distant Water Longline CPUE (S2) were assigned to Q4 based on the proportion of catch in Japan Offshore + Distant Water Longline (F1) by quarter from 1990 - 2007 Q1 (28%), Q2 (20%), Q3 (23%), Q4 (29%) (Tables 7.2 and 9.2).

#### 2.4 Model Structure

The assessment was conducted with Stock Synthesis (SS) V3.02E-SAFE, 04/07/09, using Otter Research ADMB 7.0.13 by Richard Methot (NOAA) and available from the NOAA Fisheries Toolbox (<a href="http://nft.nefsc.noaa.gov/SS.html">http://nft.nefsc.noaa.gov/SS.html</a>) (Methot 2000).

Model structure was based on preliminary age-structured stock assessments of North Pacific swordfish under a single stock scenario (Courtney and Piner 2009a and 2009b) and a two stock scenario (Courtney and Piner 2009c).

As a result of BILL-WG review of the age-structured model under a single stock scenario (BILLWG 2009b), the Stock Synthesis model for the two-stock scenario used a Beverton-Holt spawner-recruit relationship with steepness (h) fixed at 0.9; a standard error of the process error in recruitment ( $\sigma_r$ ) fixed at 0.6 and iteratively re-weighted once to match the initial Stock Synthesis model estimate of Root Mean Squared Error (R.M.S.E.); and natural mortality (M) linked to life history (Table 10). For Sub-Area 1, the population was assumed to be in equilibrium prior to 1951 with an estimated equilibrium exploitation level approximated by average Japan Offshore + Distant Water Longline Catch (1951 – 1955) of 10,512 (mt). For Sub-Area 2, the population was assumed to be unfished prior to 1955.


For this assessment, swordfish spawning was assigned to quarter 2 (April, May, June) based on a review of larval occurrence (Table 10, Appendix B). Age at recruitment in Stock Synthesis will depend on estimated quarterly selectivity at length. For example, average quarterly selectivity at age (1990 – 2006) was calculated here from the estimated quarterly selectivity at length based on stock scenario 1, a single stock north of the equator (Courtney and Piner 2009b) (Figure B.1).

Main recruitment deviations were estimated from 1970-2006. The central tendency was bias corrected for process error in recruitment from 1960-1970 using a linear interpolation of  $\sigma_r$  beginning at 0 in 1960 and ending at the full value of  $\sigma_r$  in 1970. In order to avoid potential bias in the magnitude of main recruitment deviations near the beginning of the time series, early recruitment deviations were estimated from the start year (1951 for Sub-Area 1, and 1955 for Sub-Area 2) to 1970. The estimated standard deviation of each early recruitment deviation should be equal to  $\sigma_r$  except for the last few years which were influenced by length data which began in 1970. However, as a result of estimating early recruitment deviations, reported depletion levels during the early period (prior to 1970) may be biased and should be treated with caution when interpreted relative to the status of the stock.

The population model had 49 length bins (5 cm) from 20 - 260 + (cm). The fishery length data had 45 length bins (5 cm) from 40 to 260+ (cm). The population had 20 annual ages from 0 to 20.

There were no age data. Fishery length frequency data were used to estimate selectivity patterns which controlled the size (and age) distribution of fishery removals. The

assumed CV for combined values of von Bertalanffy length at age was set to 0.15 for young fish and 0.12 for old fish.



CPUE indices were treated as survey indices and were assumed to be linearly proportional to available biomass, with constant catchability (q) assumed to occur halfway through the assigned quarter of the survey. Catch was assumed to be known without error and removed by estimating continuous fishing mortality (F) for each set of fleets with the same selectivity by region.

## 2.5 Length Based Selectivity

Length based selectivity was estimated for fleets with length frequency data. For Sub-Area 1, these included F1, F2, F3, F4, F5, F7, F12, F29, and F30 (Table 8.1). For Sub-Area 2, these included F1 (Table 8.2). We assumed that length based selectivity for fleets without length frequency data was the same as (mirrored) fleets with length frequency data within the same region. For Chinese Taipei Distant Water Longline, Korea Longline, Spain Longline, and Mexico All Gears, we assumed that the selectivity patterns mirrored those of Japan Offshore + Distant Water Longline in their respective regions (Tables 8.1 and 8.2). For US California Longline and US California Other Gear + Unknown, we assumed that selectivity patterns mirrored US California Gillnet (the only fleet in Region 1-3 with sufficient length data to estimate selectivity) (Tables 8.1 and 8.2).

Selectivity patterns for CPUE time series mirrored their respective fleet in the region with the highest proportion of catch (Tables 9.1 and 9.2).

For Sub-Area 1, all selectivity models were estimated as two parameter asymptotic logistic equations except for Japan Offshore + Distant Water Longline Region 1 (F1) which had a 6 parameter dome-shaped double normal model, and Japan Other Primarily Harpoon (F12) which had a modified 3 parameter asymptotic double normal model (Table 8.1). For Sub-Area 2, all selectivity models were estimated as two parameter asymptotic logistic equations (Table 8.2).

The rational for dome-shaped selectivity for Japan Offshore + Distant Water Longline (F1) in region 1-1 of Sub-Area 1 (Table 8.1 and Figure 2) was the relatively larger mode in length of swordfish captured in region 1-1 by the Japan Other Primarily Harpoon (F12) (Courtney and Piner 2009b). Including dome-shaped selectivity for Fleet 1 resulted in a better fit to the Japan Offshore + Distant Water longline length frequency data in region 1-1. The rational for including a modified 3 parameter asymptotic double normal model for Japan Other Primarily Harpoon (F12) was to force a maximum selectivity of 1, which allowed interpretation of resulting fishing mortality for fleet 12 to match those of the other fleets. Models run without a three parameter selectivity model for F12 were very sensitive to the selectivity pattern estimated for fleet 12, and resulted in maximum selectivity below 1 (Courtney and Piner 2009c). This may also have resulted from not setting parameter bounds correctly to accommodate the larger size range of this stock.

Selectivity parameters for the two parameter asymptotic logistic equation were estimated with a diffuse lognormal prior (Stdev = 999). Selectivity parameters for the double normal model were estimated with a diffuse symmetric beta prior (0.05).

Length based selectivity for Japan Offshore + Distant Water Longline was allowed to vary over three time periods (blocks) (start year – 1983, 1984 – 1993, 1994 – 2006) corresponding to changes in gear configuration during the years 1984-1990 and 1993-1995 (Ishimura et al. 2008, Okamoto and Bayliff 2003) (Tables 11.1 and 11.2). The timing of these breaks is also consistent with an independent analysis of the yearly change in hooks per basket of Japanese longline fisheries (Kanaiwa and Yokawa 2009). Length based selectivity was allowed to vary over two time periods (blocks) for US Hawaii Longline (1995 – 2003, 2004 – 2006) and US California Gillnet (1980 – 1999, 2000 – 2006) corresponding to management actions that may have affected length based selectivity (Ito and Childers 2008, Piner and Betcher 2009) (Table 11.1).

## 2.6 Effective Sample Size

Input standard errors for Japan Offshore + Distant Water Longline CPUE (S1) and Chinese Taipei Distant Water Longline CPUE (S8) were estimated from annual standard errors of GLM standardized CPUE (Courtney and Wagatsuma 2009). Input standard errors for US Hawaii Longline CPUE (S15) were estimated from annual standard errors of the ratio of GAM standardized catch to effort (Courtney and Wagatsuma 2009).

For Sub-Area 1, input standard errors for CPUE were iteratively re-weighted once to match the initial Stock Synthesis model estimate of Root Mean Squared Error (R.M.S.E.) for each CPUE time series (McAllister and Ianelli 1997, Piner et al. 2007a) (Table 12.1).

The Stock Synthesis model for Sub-Area 2 was sensitive to iteratively re-weighting CPUE. As a result, Sub-Area 2 input standard errors for CPUE were not iteratively re-weighted (Table 12.2). For example, when CPUE was iteratively re-weighted (Table 12.2), the very small standard error estimates for Chinese Taipei Distant Water Longline (S2) during the years 2001 – 2005 (Figure 5.2) dominated the likelihood and resulted in a non-random residual pattern in fit to Japan Offshore + Distant Water Longline CPUE (S1) during the years 1994-2006 (not shown). Chinese Taipei Distant Water Longline (S2) accounted for 9% of total swordfish catch (mt) in Sub-Area 2 from 1990 – 2007, while Japan Offshore + Distant Water Longline (S1) accounted for 62% (Table 7.2). As a result, we did not feel justified in forcing a better fit to Chinese Taipei Distant Water Longline that resulted in a poorer fit to Japan Offshore + Distant Water Longline (S1).

Fishery length frequency sample size was input as the square root of the number of fish measured. The square root transformed very large input sample sizes to a scale that approximated the R.M.S.E. effective mean sample size (Tables 12.1 and 12.2). Minimum sample size for length frequency data in the Stock Synthesis model was set at n = 100, for both annual and quarterly data, based on an ad-hoc review of the available length frequency data. If less than 100 fish were measured for length, then the length data were excluded from the model. The Stock Synthesis models for Sub-Area 1 and Sub-Area 2 were sensitive to iteratively re-weighting length frequency. As a result, Sub-Area 1 and Sub-Area 2 input sample sizes for length were not iteratively re-weighted (Tables 12.1 and 12.2). Alternative methods for estimating effective sample size for use in stock assessment models are under investigation (Shibano et al. 2010).

#### 2.7 Evaluation of Stock Status

Maximum sustainable yield (MSY), female spawning biomass (S) at MSY (S\_MSY), and fishing mortality (F) at MSY (F\_MSY) were calculated relative to the selectivity regime in "zero state," defined here as the time blocks which included the ending year 2006, and relative to the fixed value of steepness and an assumed 50:50 sex ratio. Model estimated time-series of female spawning biomass (S in metric tons, mt = 1,000 kg), recruitment (R in 1,000s of fish), total biomass (B mt), and age 2+ total biomass (B\_2+ mt) were tabulated on an annual basis. Total annual exploitation rate was calculated as (Catch mt)/(B\_2+ mt) for comparison to exploitable biomass estimated from BSP models. Age 2+ total biomass was used as a simple measure of the exploitable biomass because age 2 fish (125.8 cm EFL, Table 6) were approximately 50% fully selected (with near knife edge selectivity) in the major fisheries (Japan Offshore + Distant Water Longline in regions 1-1 and 1-2, Figures 7 and 8) (and e.g. Figure B.1).

MSY is commonly considered an upper bound for catch rather than a target. In particular, empirical evidence from production models has shown that populations have

been exploited at levels higher than MSY before MSY could be estimated with precision (Hilborn and Walters 1992). Alternative biological reference points (BRPs) including spawning stock or egg production on a per-recruit basis have been recommended as a means to preserve reproductive potential of a population (Quinn and Deriso 1999), but were not considered here.

## 2.8 Convergence Criteria and Diagnostics

The model was assumed to have converged if the standard error of the parameter estimates could be derived from the inverse of the negative hessian matrix. Convergence diagnostics were also evaluated. Excessive CV's (StDev/Parm > 50%) on estimated quantities were indicative of uncertainty in parameter estimates or assumed model structure. The correlation matrix was examined for highly correlated (> 0.95) and non-informative (< 0.01) parameters. Parameters estimated at a bound were a diagnostic for possible problems with data or the assumed model structure. Individual likelihood component fits were evaluated for CPUE, length frequency, total recruitment, and the total objective function. Fits to CPUE and patterns in Pearson's residuals of fits to length frequency were examined as diagnostics for problems with data or the assumed model structure.

### 3. Model Results

Model results were evaluated with Microsoft Excel subroutines available for SS from the NOAA Fisheries Toolbox (<a href="http://nft.nefsc.noaa.gov/SS.html">http://nft.nefsc.noaa.gov/SS.html</a>) and with R statistical package plotting subroutines designed specifically for SS (r4ss Google Code, <a href="http://code.google.com/p/r4ss/">http://code.google.com/p/r4ss/</a>).

## 3.1 Convergence Diagnostics

#### 3.1.1 Sub-Area 1

The model for Sub-Area 1 took 1 hr and 58 minutes to run, had 119 parameters, a final objective function value of 1,670.02, and a maximum final gradient of  $5.8 \times 10^{-4}$ . Model execution for Sub-Area 1 could be improved with no loss of accuracy by combining the catch of all fisheries that share the same selectivity pattern (Table 8.1) and by assigning CPUE to a fishing fleet with length data rather than modeling CPUE as a mirrored fleet.

All 19 estimated early recruitment deviations, 1951 - 1969, and 21 of 36 (58%) of estimated main recruitment deviations, 1970 - 2005, had CVs > 50%.

Additionally, 13 of 51 (25%) estimated selectivity parameters had CVs > 50%. Twelve of these were from dome shaped selectivity for fleet F1 (Japan Offshore + Distant Water Longline in region 1-1) during the time blocks 1951 – 1983, 1984 – 1993, and 1994 – 2006 (Tables 8.1 and 11.1, Figures 2 and 7.1) and included parameters 2 (ascending width of the distribution), 4 (descending width of the distribution), 5 (initial intercept of the distribution), and 6 (final intercept of the distribution). One of these was parameter 5

(initial intercept of the distribution) from dome shaped selectivity for fleet F12 (Japan Other Primarily Harpoon in Region 1-1) during the year 2006 (Table 8.1 and Figure 9). These convergence diagnostics suggest that size selectivity for fleet F1 (Japan Offshore + Distant Water Longline in region 1-1) and fleet F12 (Japan Other Primarily Harpoon in Region 1-1) may need further investigation. Fleet F1 accounted for 43.19% and 16.80% of total catch from 1951 – 1983 and 1990 – 2007 respectively (Table 7.1), so problems fitting selectivity for F1 may be of concern. However, sensitivity analysis conducted for the single stock scenario indicated that model results were not sensitive to estimating dome-shaped selectivity compared to asymptotic selectivity for F1 (Japan Offshore + Distant Water Longline in region 1 (Courtney and Piner 2009b).

Eight parameters were below the threshold (0.01) for uncorrelated parameters. Six were from dome shaped selectivity for fleet F1, including parameter 2 during the time block 1994 – 2006, parameter 4 during the time blocks 1951 – 1983 and 1984 – 1993, and parameter 5 during the time blocks 1951 – 1983, 1984 – 1993, and 1994 – 2006 (Tables 8.1 and 11.1, Figures 2 and 7.1). Another was parameter 5 from dome shaped selectivity for fleet F12 during the year 2006 (Table 8.1 and Figure 9). Another was from logistic selectivity for fleet F3 (Japan Offshore + Distant Water Longline in region 1-3) during the years 1994 - 2006 (Table 8.1 and Figure 7.3). Parameters 2 and 4, from dome shaped selectivity for fleet F1 during the years 1951 – 1984, were above the correlation threshold (0.095). These convergence diagnostics also suggests that size selectivity for fleet F1 (Japan Offshore + Distant Water Longline in region 1-1) and fleet F12 (Japan Other Primarily Harpoon in Region 1-1) may need further investigation. They also suggest that there may not be sufficient length data to accurately estimate selectivity for fleet F3 (Japan Offshore + Distant Water Longline in region 1-3). Fleet F3 accounted for only 2.76% and 0.74% of total catch from 1951 – 1983 and 1990 – 2007 respectively (Table 7.1), so fleet F3 could be combined with another fleet.

#### 3.1.2 Sub-Area 2

The model for Sub-Area 2 took 7 minutes to run, had 69 parameters, a final objective function value of 325.3, and a maximum final gradient component of  $7.6 \times 10^{-6}$ . Eleven of fifteen (73%) of estimated early recruitment deviations, 1955 - 1969, and 33 of 36 (92%) of estimated main recruitment deviations, 1970 - 2005, had CVs > 50%. One parameter, main recruitment deviation in 1979, was below the threshold (0.01) for uncorrelated parameters.

#### 3.2 Model Fits

#### 3.2.1 Sub-Area 1

For Sub-Area 1, fits to Japan Offshore + Distant Water Longline CPUE (S1; Table 9.1 and Figure 4.1) were improved (-28 likelihood units) relative to the preliminary assessment (Courtney and Piner 2009c) (Table 15.1). Fits to Chinese Taipei Distant Water Longline CPUE (S8), U.S. Hawaii Longline CPUE (S15) and all length frequency

data were about the same as the preliminary assessment (Courtney and Piner 2009c) (Figures 5.1 and 6.1, Tables 15.1 and 16.1).

Pearson residuals for quarterly fits to length frequency from fleet F1 (Japan Offshore + Distant Water Longline in region 1-1) (Table 8.1 and Figure 2) indicated that the model underestimated the number of small fish during many year/quarters and the number of large fish after 1984 (Figure 12.1). Pearson residuals for quarterly fits to length frequency from fleet F2 (Japan Offshore + Distant Water Longline in region 1-2) indicated that the model underestimated the number of small fish in many year/quarters and underestimated the number of fish at the peak (~ 150 cm eye fork length) during apparent recruitment events in the late 1990s and early 2000s (Figure 12.2). Pearson residuals for length frequency summarized annually for all Japan Offshore + Distant Water Longline fleets (F1, F2, F3, F4, and F5) combined indicated that the model underestimated the number of small fish (75 cm to 100 cm EFL) during most years (Figures 12.7.1A and 12.7.1B).

Model fits to US Hawaii Longline length frequency showed trends in Pearson residuals associated with an apparent recruitment event in the late 1990s (Figure 15). Model fits to US California Gillnet length frequency underestimated the number of large fish prior to 1995 (Figure 16).

#### 3.2.2 Sub-Area 2

For Sub-Area 2, fits to Japan Offshore + Distant Water Longline CPUE (S1; Table 9.2 and Figure 4.2) were improved (-14 likelihood units) relative to the preliminary assessment (Courtney and Piner 2009c) (Table 15.2). Fits to Chinese Taipei Distant Water Longline CPUE (S2) were also improved (-168 likelihood units) relative to the preliminary assessment (Courtney and Piner 2009c) (Table 15.2). However, this may have been an artifact of increasing the variance within the likelihood component by not iteratively reweighting CPUE from the input standard errors (Table 10). Model fits to length frequency data were about the same (+ 1.4 likelihood units) relative to the preliminary assessment (Courtney and Piner 2009c) (Table 16.2).

For Sub-Area 2, the scale of Pearson residuals for fits to length frequency data was much larger (max 26, F1, Figure 12.6) than for Sub-Area 1 (max 8, F1, Figure 12.1) indicating a relatively poorer fit to length frequency data for Sub-Area 2. Model fits to length frequency data from Japan Offshore + Distant Water Longline in region 2-1 underestimated the number of small fish in many year/quarters (Figures 12.6, and 12.7.2B). There were also fewer predicted fish at the peak in length frequency (~150 cm eye fork length) than observed during some years (e.g., 1974, 1975, 1982, 1983, and 1989) (Figures 12.7.2A and 12.7.2B).

#### 3.3 Estimated Time Series

#### 3.3.1 Sub-Area 1

Sub-Area 1 model estimated time series of total biomass, age 2+ biomass, and female spawning biomass declined from 1951 to the mid 1960s, increased gradually to the early 1990's, and then declined gradually to the present (Table 13.1, Figures 17-19).

Sub-Area 1 age-0 recruitment variability was consistent with the availability of length frequency data which began in 1970 (Figure 20.1). Model estimation of early recruitment 1951 – 1970 moved from the central tendency about 10 years prior to 1970 as length frequency data from older fish available starting in 1970 began to influence the estimates. There was limited data at low population size to estimate the spawner-recruit relationship (Figure 21.1).

#### 3.3.2 Sub-Area 2

Sub-Area 2 model estimated time series of total biomass, age 2+ biomass, and female spawning biomass (Table 13.2, Figures 17 - 19) mirrored trends in standardized CPUE time series for Japan Offshore + Distant Water Longline (S1) (Figure 4.2). Estimates of female spawning biomass and age-0 recruitment for Sub-Area 2 were highly uncertain (Figures 19.2, 20.2, and 23.2). This was consistent with the more limited length frequency data available for Sub-Area 2 (Table 8.2). Trends in female spawning biomass and age-0 recruitment were essentially flat when considered within the context of the high estimation error (Figures 19.2, 20.2, and 23.2). There was limited data at low population size to estimate the spawner-recruit relationship (Figure 21.2).

#### 3.4 Stock Status

#### 3.4.1 Sub-Area 1

Sub-Area 1 model estimated female spawning biomass was above MSY for all years from 1951 – 1957 and 1965 – 2006 (Tables 13.1 and 18.1, Figures 22.1 and 23.1). Model estimated fishing mortality (F) was above F\_MSY from 1957 – 1972 and 1976, and has fluctuated below F\_MSY since 1977 (Tables 14.1 and 18.1, Figures 22.1 and 24.1). Model estimated ending year female spawning biomass (S\_2006) as a proportion of unfished female spawning biomass (S\_0) was 28% (Table 17.1). Annual fishing mortality summed over all fleets and quarters and averaged from 1995-2006 (F\_Avg 1995-2006) was 0.68 (Table 18.1). Average fishing mortality (F\_Avg 1995-2006) was below the estimated F at MSY (F\_Avg 1995-2006 / F\_MSY = 0.76) (Table 18.1). Average fishing mortality (F\_Avg 1995-2006 = 0.68) was higher than male and female natural mortality (M) which ranged from 0.40 at age 0.25 to 0.35 at older ages (Table 6).

Stock status for Sub-Area 1 estimated from this assessment was consistent with the preliminary assessment (Courtney and Piner 2009c) and model estimates of stock status were not sensitive to the minor changes made to the model since the preliminary assessment (Tables 17.1 and 18.1).

#### 3.4.2 Sub-Area 2

The Sub-Area 2 model estimated female spawning biomass was above MSY for all years from 1955 – 2006 (Tables 13.2 and 18.2, Figures 22.2 and 23.2). Model estimated fishing mortality (F) was below F\_MSY for all years (Tables 14.2 and 18.2, Figures 22.2 and 24.2). Model estimated ending year female spawning biomass (S\_2006) as a proportion of unfished female spawning biomass (S\_0) was 92% (Table 17.2). Annual fishing mortality summed over all fleets and quarters and averaged from 1995-2006 (F\_Avg 1995-2006 was 0.07 (Table 18.2). Average fishing mortality (F\_Avg 1995-2006) was below the estimated F at MSY (F\_Avg 1995-2006 / F\_MSY = 0.13) (Table 18.2). Average fishing mortality (F\_Avg 1995-2006 = 0.07) was lower than male and female natural mortality (M) which ranged from 0.40 at age 0.25 to 0.35 at older ages (Table 6).

For Sub-Area 2, likelihood component fits for CPUE (Table 15.2) and resulting estimates of stock status (Tables 17.2 and 18.2) were sensitive to the minor changes made to the model since the preliminary assessment (Courtney and Piner 2009c) and the addition of updated catch data resulting in very different estimates of total stock size.

Together, the relatively poor fit to the limited length frequency data (Section 3.2.2, Figure 12.6), the highly uncertain estimates of female spawning biomass and age-0 recruitment (Section 3.3.2, Figures 19.2, 20.2, and 23.2), and the model sensitivity to the relatively minor changes made to the model since the preliminary assessment and to the addition of updated catch data (Tables 15.2, 17.2 and 18.2), suggest that the Stock Synthesis model for Sub-Area 2 may not provide reliable estimates of stock status in Sub-Area 2.

## 3.5 Stock Status estimated with SS relative to BSP

#### 3.5.1 Sub-Area 1

Sub-Area 1 Stock Synthesis model estimates of age 2+ biomass were lower (outside the 95% Bayesian credible intervals) than time-series of exploitable biomass estimated with Bayesian surplus production (BSP) models run on the same data (Table 13.1, Figure 25.1). As a result estimated harvest rate from Stock Synthesis was higher than BSP (Table 14.1, Figure 26.1). Stock Synthesis model estimates of exploitable biomass were most consistent with BSP during recent years (~1999 – 2006) (Figure 25.1).

As a result of estimating early recruitment deviations in SS, reported depletion levels from SS during the early period (prior to 1970) may be biased and should be treated with caution when interpreted relative to the status of the stock. The assumed equilibrium catch of 10,512 mt in SS for Sub-Area 1 prior to 1951 may also have influenced depletion levels estimated by SS during early years.

#### 3.5.2 Sub-Area 2

Sub-Area 2 Stock Synthesis model estimates of age 2+ biomass were higher than time-series of exploitable biomass estimated with BSP models run on the same data but inside the 95% Bayesian credible intervals after 1990 (Table 13.2, Figure 25.2). Stock Synthesis model estimates of exploitable biomass were most consistent with BSP during recent years (~1999 – 2006) (Figure 25.2). Trends in harvest rate were nearly identical for Stock Synthesis and BSP model estimates (Table 14.2 and Figure 26.2).

## 4. Conclusions

#### 4.1 Sub-Area 1

For Sub-Area 1, ending year 2006 spawning biomass was estimated above spawning biomass at maximum sustainable yield (MSY) and 2006 fishing mortality (F) was estimated below F at MSY (Figures 22 - 24).

The Stock Synthesis model for Sub-Area 1 appeared to adequately estimate selectivity for the major fisheries and to fit CPUE series well enough to scale the absolute abundance estimates (Figures 4 – 11). Uncertainty in the selectivity estimated for fleet F12 (Japan Other Primarily Harpoon in Region 1-1) and fleet F1 (Japan Offshore + Distant Water Longline in region 1-1) during the time blocks 1951 – 1983, 1984 – 1993, and 1994 – 2006 suggests that the selectivity patterns for these fleets may need further investigation. However, sensitivity analysis conducted for the single stock scenario indicated that model results were not sensitive to estimating dome-shaped selectivity compared to asymptotic selectivity for F1 (Japan Offshore + Distant Water Longline in region 1 (Courtney and Piner 2009b). The Stock Synthesis model for Sub-Area 1 appeared to adequately fit length compositions from the major fisheries (Figures 12 – 16).

Evaluation of stock status for Sub-Area 1 from Stock Synthesis and BSP models gave similar results. Namely, ending year 2006 spawning biomass was estimated above spawning biomass at maximum sustainable yield (MSY) and 2006 fishing mortality (F) was estimated below F at MSY (Brodziak and Ishimura 2009, BILL-WG 2009b). However, relative to the BSP model, Stock Synthesis results from Sub-Area 1 indicated lower biomass and higher harvest rates (often outside 95% BSP Bayesian credible intervals) (Figures 25 – 26). The relatively higher depletion levels estimated from Stock Synthesis during the early period (prior to 1970) may be biased due to estimation of early recruitment deviations in SS and should be treated with caution when interpreted relative to the status of the stock. Also, the assumed equilibrium catch of 10,512 mt in SS for Sub-Area 1 prior to 1951 may have influenced depletion levels estimated by SS during early years.

#### 4.2 Sub-Area 2

Together, the relatively poor fit to the limited length frequency data (Section 3.2.2, Figure 12.6), the highly uncertain estimates of female spawning biomass and age-0 recruitment (Section 3.3.2, Figures 19.2, 20.2, and 23.2), and the model sensitivity to the

relatively minor changes made to the model since the preliminary assessment and to the addition of updated catch (Tables 15.2, 17.2 and 18.2), suggest that the Stock Synthesis model for Sub-Area 2 may not provide reliable estimates of stock status in Sub-Area 2.

The Sub-Area 2 model had more limited length frequency data and had a relatively poor fit to the limited length frequency data (Figure 12.6). Estimates of female spawning biomass and age-0 recruitment for Sub-Area 2 were highly uncertain (Figures 19.2, 20.2, and 23.2). This was consistent with the more limited length frequency data available for Sub-Area 2 (Table 8.2). Stock status for Sub-Area 2 estimated from this assessment with Stock Synthesis was also not consistent with the stock status estimated from the preliminary assessment with Stock Synthesis (Courtney and Piner 2009c). This indicates that model estimates of stock status were sensitive to the changes made to the model since the preliminary assessment (Tables 17.2 and 18.2).

However, evaluation of stock status for Sub-Area 2 from Stock Synthesis and BSP models gave similar results. Namely, ending year 2006 spawning biomass was estimated above spawning biomass at maximum sustainable yield (MSY) and 2006 fishing mortality (F) was estimated below F at MSY (Brodziak and Ishimura 2009, BILL-WG 2009b).

## **Acknowledgements**

The authors thank Dr Richard Methot (NOAA Fisheries) for very helpful technical reviews of the SS North Pacific swordfish model under a single stock scenario presented separately (Courtney and Piner 2009b) and for tips on implementation of SS <a href="http://nft.nefsc.noaa.gov/SS.html">http://nft.nefsc.noaa.gov/SS.html</a> (NOAA Fisheries Toolbox). The authors also thank Dr Ian Stewart and Dr Ian Taylor (NOAA Fisheries) for development of the R statistical package plotting subroutines <a href="http://code.google.com/p/r4ss/">http://code.google.com/p/r4ss/</a> (r4ss Google Code) used to make most of the figures in this report.

## References

Alverson, D., and M. Carney. 1975. A graphic review of the growth and decay of population cohorts. Journal du Conseil International pour l'Exploration de la Mer. 36(2):133-143.

Bigelow, K., and P. Kleiber. 2004. Evaluating the reliability of MULTIFAN-CL assessments of the North Pacific swordfish population. Working Paper. Swordfish Working Group, January 29 and 31, 2004. ISC/04/SWO-WG/08.

BILL-WG. 2008 Report of the billfish working group special session. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean. 12-14 November 2008, Pacific Islands Regional Office, Honolulu, Hawaii, USA. ISC/08/BILLWG-SS/Report.

BILL-WG. 2009a. Report of the billfish working group workshop, International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean. 3-10 February 2009. Honolulu, Hawaii, USA. ISC/09/BILLWG-1/Report.

BILL-WG. 2009b. Report of the billfish working group workshop, International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean.19-26 May 2009. Busan, Korea, USA. ISC/09/BILLWG-2/Report.

BILL-WG. 2009c. Report of the billfish working group workshop, International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean. 30 November – 4 December 2009. Honolulu, Hawaii, USA. ISC/09/BILLWG-3/Report.

Brodziak, J. 2007. Preliminary calculations of yield and spawning biomass per recruit; biological reference points for striped marlin. ISC/07/MARWG&SWOWG-2/03.

Brodziak J. 2009. Potential natural mortality rates of North Pacific swordfish, *Xiphias gladius*. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/09/BILLWG-1/13.

Brodziak J. 2010. Update of the Production Model Assessment of the Eastern Pacific Swordfish Stock (Xiphias gladius) in 2010. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish WG, ISC/10/BILLWG-1/XX.

Brodziak, J. and D. Courtney. 2009. Length distributions of female and male swordfish, *Xiphias gladius*, captured in the directed Hawaii pelagic longline fishery during 1994-2008. ISC/09/BILLWG-1/07.

Brodziak, J. and G. Ishimura. 2009. Development of Bayesian surplus production models for assessing the North Pacific swordfish population. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish WG, ISC/09/BILLWG-2/02, 29 p.

Brodziak, J. and C. M. Legault 2005. Model averaging to estimate rebuilding targets for overfished stocks. Can. J. Fish. Aquat. Sci. 62:544-562.

Brodziak, J., and K. Piner. 2008. Maximum sustainable yield-based reference points for North Pacific striped marlin, *Tetrapturus audax*. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/08/BILLWG-2/09.

Brodziak, J., and K. Piner. 2009. Model uncertainty and biological reference points for North Pacific striped marlin. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/09/BILLWG-1/02.

Chen, A. and S. Watanabe. 1989. Age dependence of natural mortality coefficient in fish population dynamics. Nippon Suisan Gakkaishi. 55:205-208.

Courtney, D., Brodziak, J., and E. Fletcher. 2009. Annual and quarterly length frequency of swordfish (*Xiphias gladius*) catch in the Hawaii-based longline fishery, 1994-2008, for use in stock assessment. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/09/BILLWG-1/08.

Courtney, D. and E. Fletcher. 2009. Input Data for a North Pacific Swordfish Stock Assessment using Stock Synthesis. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/09/BILLWG-2/04.

Courtney, D., G. Ishimura, and L. Wagatsuma. 2008. Review and bibliography of recent swordfish stock assessment methods and available data for North Pacific Ocean. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/08/BILLWG-2.5/05.

Courtney, D. L., and K. Piner. 2009a. Preliminary Stock Synthesis model sensitivity runs for a North Pacific swordfish (*Xiphias gladius*) stock assessment. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/09/BILLWG-2/05.

Courtney, D. L., and K. Piner. 2009b. Age structured stock assessment of North Pacific swordfish (*Xiphias gladius*) with Stock Synthesis under a single stock scenario. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/09/BILLWG-3/08.

Courtney, D. L., and K. Piner. 2009c. Preliminary age structured stock assessment of North Pacific swordfish (*Xiphias gladius*) with Stock Synthesis under two stock scenario. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/09/BILLWG-3/07.

Courtney, D. and L. Wagatsuma. 2009. Input data for a North Pacific swordfish stock assessment using Bayesian production models. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/09/BILLWG-2/01.

DeMartini, E.E., J.H. Uchiyama, and H.A. Williams. 2000. Sexual maturity, sex ratio, and size composition of swordfish, *Xiphias gladius*, caught by the Hawaii-based pelagic longline fishery. Fishery Bulletin 98:489-506.

DeMartini, E.E., J.H. Uchiyama, R.L. Humphreys Jr., J.D. Sampaga, and H.A. Williams. 2007. Age and growth of swordfish (*Xiphias gladius*) caught by the Hawaii-based pelagic longline fishery. Fishery Bulletin 105:356-367.

Fleischer, L. A., Traulsen, A. K., and P. A. Ulloa-Ramirez. 2009. Mexican progress report on the marlin and swordfish fishery. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/09/BILLWG-1/14.

Hewitt, D., and J. Hoenig. 2005. Comparison of two approaches for estimating natural mortality based on longevity. Fish. Bull. 103:433-437.

Hilborn, R. and C. Walters. 1992. Quantitative fisheries stock assessment. Routledge, Chapman and Hall Inc. 570 p.

Hoenig, J. 1983. Empirical use of longevity data to estimate mortality rates. Fish. Bull. 82:898-903.

Ichinokawa, M., and J. Brodziak. 2008. Stock boundary between possible swordfish stocks in the northwest and southeast Pacific judged from fisheries data of Japanese longliners. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/08/BILLWG-2.5/04.

Ishimura, G., Yokawa, K., and M. Ichinokawa. 2008. Update of the Catch per Unit Effort distribution of swordfish in the Japanese offshore and distant-water longline fishery in the Pacific. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/08/BILLWG-2/07.

Ito, R. Y., and J. Childers. 2008. U.S. Swordfish Fisheries in the North Pacific Ocean. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/08/BILLWG-2/02.

Jensen, A. 1996. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Can. J. Fish. Aquat. Sci. 53:820-822.

Kanaiwa, M., and K. Yokawa. 2009. The analysis of stock structure for striped marlin in North Pacific Ocean. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/09/BILLWG-3/02.

Kleiber, P., and K. Yokawa. 2004. MULTIFAN-CL assessment of swordfish in the North Pacific. Working Paper. ISC Swordfish Working Group, January 29 and 31, 2004. ISC/04/SWO-WG/07.

Lorenzen, K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. J. Fish. Biol. 49:627-647.

MAR&SWOWG. 2007a. Report of the Marlin and Swordfish Working Group Joint Workshop, International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean. March 19-26, 2007, Taipei, Taiwan. Annex 8.

MAR&SWOWG. 2007b. Report of the Marlin and Swordfish Working Group Workshop, International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean. July 19-21, 2007, Busan, Korea. Annex 9.

McAllister, M. K., and J. N. Ianelli. 1997. Bayesian stock assessment using catch-age data and the sampling-importance resampling algorithm. Can J. Fish. Aquat. Sci. 54:284-300.

Methot, R. D. 2000. Technical description of the stock synthesis assessment program. U.S. Department of Commerce, NOAA Tech. Memm., NMFS-NWFSC-43, pp. 1-56.

Myers, R. A., K. G. Bowen, and N. J. Borrowman. 1999. Maximum reproductive rate of fish at low population sizes. Can J. Fish. Aquat. Sci. 56:2404-2419.

Okamoto, H. and W. H. Bayliff. 2003. A review of the Japanese longline fishery for tunas and billfishes in the eastern Pacific Ocean. Inter-American Tropical Tuna Commission. Bulletin Vol. 22 No. 4.

Pauly, D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. Journal du Conseil International pour l'Exploration de la Mer. 39(2):175-192.

Peterson, I., and J. Wroblewski. 1984. Mortality rates of fishes in the pelagic ecosystem. Can. J. Fish. Aquat. Sci. 41:1117-1120.

Piner, K. and A. Betcher. 2009. CPUE time series from the California Driftnet Fishery 1985-Present. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/09/BILLWG-2/09.

Piner, K., R. Conser, G. DiNardo, and J. Brodziak. 2007a. SS2 sensitivity runs for Striped Marlin assessment WG 2007. ISC/07/MARWG&SWOWG-1/02.

Piner, K., R. Conser, G. DiNardo, and J. Brodziak. 2007b. Evaluation of model performance from the 2007 ISC Striped Marlin stock assessment. ISC/07/MARWG&SWOWG-2/04

Quinn, T. J. II and R. B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press, New York, 542 p.

Shibano, A., Yokawa, K., Takeuchi, Y. and D. Courtney. 2010. Effective Sample Size of Swordfish (Xiphias gladius) Length Measurements in the Hawaii-based Longline Fishery, 2005, for use in Stock Assessment. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish WG, ISC/10/BILLWG-1/XX.

Sun, C.-L., S.-P. Wang, and S.-Z. Yeh. 2002. Age and growth of the swordfish (*Xiphias gladius*) in the waters around Taiwan determined from the anal-fin rays. Fish. Bull. 108:822-835.

Sun, C.-L., Wang, S.-P., Porch, C.E., and Yeh, S.-Z. 2005. Sex-specific yield per recruit and spawning stock biomass per recruit for the swordfish, *Xiphias gladius*, in the waters around Taiwan. Fisheries Research 71:61-69.

- Sun, C.-L., S.-Z. Yeh, and N.-J. Su. 2009. Standardization of Taiwanese distant water tuna longline catch rates for swordfish in the North Pacific, 1995-2007, based on two stock structure scenarios. International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific/Billfish, ISC/09/BILLWG-1/17.
- Uchiyama, J.H., DeMartini, E.E., and Williams, H.A. (*Editors*). 1999. Length-Weight Interrelationships for swordfish, *Xiphias gladius*, caught in the central North Pacific. NOAA Technical Memorandum NMFS NOAA-TM-NMFS-SWFSC-284.
- Uchiyama J. H., and R. L. Humphreys. 2007. Revised review table of vital rates and life history parameters for striped marlin, swordfish, and blue marlin in the North Pacific Ocean (February 2007). Pacific Islands Fisheries Science Center, Honolulu, HI Unpublished Pers. Comm.
- Wang, S.-P., C.-L. Sun, and S.-Z. Yeh. 2003. Sex ratios and sexual maturity of swordfish (*Xiphias gladius* L.) in the waters of Taiwan. Zoological Studies 42(4):529-539.
- Wang, S.-P., Sun, C.-L., Punt, A., and Yeh, S.-Z. 2005. Evaluation of a sex-specific age-structured assessment method for the swordfish, *Xiphias gladius*, in the North Pacific Ocean. Fisheries Research 73:79-97.
- Wang, S., Sun, C., Punt, A., and Yeh, S. 2007. Application of the sex-specific age-structured assessment method for swordfish, *Xiphias gladius*, in the North Pacific Ocean. Fisheries Research 84:282-300.

Table 1. Central North Pacific swordfish life history parameters estimated independently.

| Life History                                                                                          |                                  |                                                                |                                         |                                                                                                                          |
|-------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Parameter                                                                                             | Female Value                     | Male Value                                                     | Combined Value*                         | Equation/Source                                                                                                          |
| Central North Pacific<br>Von Bertalanffy<br>growth parameters<br>(cm of eye-fork<br>length)           | K = 0.246 ± 0.019                | K = 0.271 ± 0.034<br>LINF = 208.9 ± 5.60<br>T0 = -1.37 ± 0.259 | K = 0.257<br>LINF = 219.7<br>T0 = -1.31 | $\boxed{EFL_{_{l}}=EFL_{_{\infty}}\left(1-e^{-k(t-t_{0})}\right)}$ Uchiyama and Humphreys (2007), DeMartini et al (2007) |
| Central North Pacific<br>maximum observed<br>age TMAX (y), and<br>Max eye frok length<br>(cm)         | TMAX (y) = 12<br>Max (EFL) = 259 | TMAX (y) = 11<br>Max (EFL) = 229                               |                                         | Uchiyama and Humphreys (2007),<br>DeMartini et al (2007)                                                                 |
| Central North Pacific<br>length-weight<br>relationship pooled<br>sexes (cm of eye<br>fork length, kg) |                                  |                                                                |                                         | $W(kg) = aEFL^b$ Uchiyama and Humphreys (2007), Uchiyama et al. (1999)                                                   |
| Central North Pacific<br>maturity probability<br>(p(L) at length (cm of<br>eye fork length)           |                                  | L50 = 102.0<br>σ = 7.08                                        | L50 = 121.1<br>σ = 15.9                 | $p(EFL) = \left(1 + \exp\left(\frac{-(EFL - L_{50})}{\sigma_m}\right)\right)^{-1}$ De Martini et al. (2000)              |

<sup>\*</sup> Combined values for von Bertalanffy growth parameters and maturity probability were obtained by fitting the respective models to combined data in Excel and minimizing the squared differences between observed and expected values.

Table 2. Estimates of female swordfish natural mortality rates at age linked to life history of Central North Pacific swordfish (adapted from Brodziak 2009).

| Age<br>(yrqtr) | Female<br>Weight (kg) | Hoenig<br>1983 | Alverson and<br>Carney (1975) | Pauly<br>(1980) | Beverton-Holt<br>invariant 2 (Jensen<br>1996) | Lorenzen (1996)<br>tropical system<br>estimator | Mean |
|----------------|-----------------------|----------------|-------------------------------|-----------------|-----------------------------------------------|-------------------------------------------------|------|
| 0.25           | 6.3                   | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.49                                            | 0.38 |
| 0.5            | 9.3                   | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.45                                            | 0.38 |
| 0.75           | 12.9                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.42                                            | 0.37 |
| 1              | 17.0                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.40                                            | 0.37 |
| 1.25           | 21.6                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.38                                            | 0.36 |
| 1.5            | 26.6                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.36                                            | 0.36 |
| 1.75           | 32.0                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.35                                            | 0.36 |
| 2              | 37.7                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.34                                            | 0.35 |
| 2.25           | 43.7                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.33                                            | 0.35 |
| 2.5            | 49.8                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.32                                            | 0.35 |
| 2.75           | 56.1                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.31                                            | 0.35 |
| 3              | 62.5                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.30                                            | 0.35 |
| 3.25           | 69.0                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.30                                            | 0.35 |
| 3.5            | 75.4                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.29                                            | 0.34 |
| 3.75           | 81.9                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.29                                            | 0.34 |
| 4              | 88.2                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.28                                            | 0.34 |
| 4.25           | 94.5                  | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.28                                            | 0.34 |
| 4.5            | 100.7                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.27                                            | 0.34 |
| 4.75           | 106.8                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.27                                            | 0.34 |
| 5              | 112.7                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.27                                            | 0.34 |
| 5.25           | 118.5                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.26                                            | 0.34 |
| 5.5            | 124.1                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.26                                            | 0.34 |
| 5.75           | 129.5                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.26                                            | 0.34 |
| 6              | 134.8                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.26                                            | 0.34 |
| 6.25           | 139.9                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.26                                            | 0.34 |
| 6.5            | 144.7                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.25                                            | 0.34 |
| 6.75           | 149.4                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.25                                            | 0.34 |
| 7              | 153.9                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.25                                            | 0.34 |
| 7.25           | 158.3                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.25                                            | 0.34 |
| 7.5            | 162.4                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.25                                            | 0.34 |
| 7.75           | 166.4                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.25                                            | 0.34 |
| 8              | 170.1                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.25                                            | 0.34 |
| 8.25           | 173.8                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 8.5            | 177.2                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 8.75           | 180.5                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 9              | 183.6                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 9.25           | 186.5                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 9.5            | 189.4                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 9.75           | 192.0                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 10             | 194.6                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 10.25          | 197.0                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 10.5           | 199.3                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 10.75          | 201.4                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 11             | 203.5                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 11.25          | 205.4                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 11.5           | 207.2                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 11.75          | 209.0                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.24                                            | 0.33 |
| 12             | 210.6                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.23                                            | 0.33 |
| 12.25          | 212.2                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.23                                            | 0.33 |
| 12.5           | 213.6                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.23                                            | 0.33 |
| 12.75          | 215.0                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.23                                            | 0.33 |
| 13             | 216.3                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.23                                            | 0.33 |
| 13.25          | 217.6                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.23                                            | 0.33 |
| 13.5           | 218.7                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.23                                            | 0.33 |
| 13.75          | 219.8                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.23                                            | 0.33 |
| 14             | 220.9                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.23                                            | 0.33 |
| 14.25          | 221.8                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.23                                            | 0.33 |
| 14.5           | 222.8                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.23                                            | 0.33 |
| 14.75          | 223.6                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.23                                            | 0.33 |
| 15             | 224.4                 | 0.35           | 0.36                          | 0.35            | 0.37                                          | 0.23                                            | 0.33 |

Table 3. Estimates of male swordfish natural mortality rates at age linked to life history of Central North Pacific swordfish (adapted from Brodziak 2009).

| Age<br>(yrqtr) | Male<br>Weight<br>(kg) | Hoenig<br>1983 | Alverson and<br>Carney (1975) | Pauly<br>(1980) | Beverton-Holt<br>invariant 2 (Jensen<br>1996) | Lorenzen (1996)<br>tropical system<br>estimator | Mean |
|----------------|------------------------|----------------|-------------------------------|-----------------|-----------------------------------------------|-------------------------------------------------|------|
| 0.25           | 7.3                    | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.48                                            | 0.41 |
| 0.5            | 10.3                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.44                                            | 0.40 |
| 0.75           | 13.8                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.42                                            | 0.40 |
| 1              | 17.7                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.39                                            | 0.39 |
| 1.25           | 21.9                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.38                                            | 0.39 |
| 1.5            | 26.5                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.36                                            | 0.38 |
| 1.75           | 31.3                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.35                                            | 0.38 |
| 2              | 36.3                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.34                                            | 0.38 |
| 2.25           | 41.4                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.33                                            | 0.38 |
| 2.5            | 46.6                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.32                                            | 0.38 |
| 2.75           | 51.9                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.32                                            | 0.38 |
| 3              | 57.1                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.31                                            | 0.37 |
| 3.25           | 62.4                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.30                                            | 0.37 |
| 3.5            | 67.5                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.30                                            | 0.37 |
| 3.75           | 72.6                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.29                                            | 0.37 |
| 4              | 77.6                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.29                                            | 0.37 |
| 4.25           | 82.5                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.29                                            | 0.37 |
| 4.5            | 87.2                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.28                                            | 0.37 |
| 4.75           | 91.7                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.28                                            | 0.37 |
| 5              | 96.2                   | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.28                                            | 0.37 |
| 5.25           | 100.4                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.27                                            | 0.37 |
| 5.5            | 104.5                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.27                                            | 0.37 |
| 5.75           | 108.4                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.27                                            | 0.37 |
| 6              | 112.2                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.27                                            | 0.37 |
| 6.25           | 115.8                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.27                                            | 0.37 |
| 6.5            | 119.2                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.26                                            | 0.36 |
| 6.75           | 122.4                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.26                                            | 0.36 |
| 7              | 125.5                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.26                                            | 0.36 |
| 7.25           | 128.5                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.26                                            | 0.36 |
| 7.5            | 131.3                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.26                                            | 0.36 |
| 7.75           | 133.9                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.26                                            | 0.36 |
| 8              | 136.4                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.26                                            | 0.36 |
| 8.25           | 138.8                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.26                                            | 0.36 |
| 8.5            | 141.0                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.26                                            | 0.36 |
| 8.75           | 143.1                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 9              | 145.1                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 9.25           | 147.0                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 9.5            | 148.8                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 9.75           | 150.4                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 10             | 152.0                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 10.25          | 153.5                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 10.5           | 154.9                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 10.75          | 156.2                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 11             | 157.4                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 11.25          | 158.6                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 11.5           | 159.6                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 11.75          | 160.6                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 12             | 161.6                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 12.25          | 162.5                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 12.5           | 163.3                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 12.75          | 164.1                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 13             | 164.9                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 13.25          | 165.5                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 13.5           | 166.2                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 13.75          | 166.8                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 14             | 167.4                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 14.25          | 167.9                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 14.5           | 168.4                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 14.75          | 168.9                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |
| 15             | 169.3                  | 0.38           | 0.39                          | 0.38            | 0.41                                          | 0.25                                            | 0.36 |

Table 4. Central North Pacific female swordfish life history.

| Age Class<br>(yrqtr) | Female Length (cm) | Female<br>Weight (kg) | Female Fraction<br>Mature | Female<br>Natural Mortality<br>(Life History Mean Table 2) |
|----------------------|--------------------|-----------------------|---------------------------|------------------------------------------------------------|
| 0.25                 | 71                 | 6.3                   | 0.00                      | 0.38                                                       |
| 0.5                  | 80                 | 9.3                   | 0.00                      | 0.38                                                       |
| 0.75                 | 89                 | 12.9                  | 0.00                      | 0.37                                                       |
| 1                    | 98                 | 17.0                  | 0.01                      | 0.37                                                       |
| 1.25                 | 106                | 21.6                  | 0.02                      | 0.36                                                       |
| 1.5<br>1.75          | 113<br>120         | 26.6<br>32.0          | 0.04<br>0.08              | 0.36<br>0.36                                               |
| 2                    | 127                | 37.7                  | 0.15                      | 0.35                                                       |
| 2.25                 | 133                | 43.7                  | 0.25                      | 0.35                                                       |
| 2.5                  | 139                | 49.8                  | 0.37                      | 0.35                                                       |
| 2.75                 | 144                | 56.1                  | 0.51                      | 0.35                                                       |
| 3                    | 149                | 62.5                  | 0.64                      | 0.35                                                       |
| 3.25                 | 154                | 69.0                  | 0.75                      | 0.35                                                       |
| 3.5                  | 159                | 75.4                  | 0.83                      | 0.34                                                       |
| 3.75<br>4            | 163<br>167         | 81.9<br>88.2          | 0.88<br>0.92              | 0.34<br>0.34                                               |
| 4.25                 | 171                | 94.5                  | 0.92                      | 0.34                                                       |
| 4.5                  | 174                | 100.7                 | 0.96                      | 0.34                                                       |
| 4.75                 | 178                | 106.8                 | 0.97                      | 0.34                                                       |
| 5                    | 181                | 112.7                 | 0.98                      | 0.34                                                       |
| 5.25                 | 184                | 118.5                 | 0.98                      | 0.34                                                       |
| 5.5                  | 187                | 124.1                 | 0.99                      | 0.34                                                       |
| 5.75                 | 189                | 129.5                 | 0.99                      | 0.34                                                       |
| 6<br>6.25            | 192<br>194         | 134.8<br>139.9        | 0.99<br>0.99              | 0.34<br>0.34                                               |
| 6.5                  | 194                | 144.7                 | 1.00                      | 0.34                                                       |
| 6.75                 | 198                | 149.4                 | 1.00                      | 0.34                                                       |
| 7                    | 200                | 153.9                 | 1.00                      | 0.34                                                       |
| 7.25                 | 202                | 158.3                 | 1.00                      | 0.34                                                       |
| 7.5                  | 204                | 162.4                 | 1.00                      | 0.34                                                       |
| 7.75                 | 205                | 166.4                 | 1.00                      | 0.34                                                       |
| 8                    | 207                | 170.1                 | 1.00                      | 0.34                                                       |
| 8.25                 | 208                | 173.8                 | 1.00                      | 0.33                                                       |
| 8.5<br>8.75          | 210<br>211         | 177.2<br>180.5        | 1.00<br>1.00              | 0.33<br>0.33                                               |
| 9                    | 212                | 183.6                 | 1.00                      | 0.33                                                       |
| 9.25                 | 213                | 186.5                 | 1.00                      | 0.33                                                       |
| 9.5                  | 214                | 189.4                 | 1.00                      | 0.33                                                       |
| 9.75                 | 215                | 192.0                 | 1.00                      | 0.33                                                       |
| 10                   | 216                | 194.6                 | 1.00                      | 0.33                                                       |
| 10.25                | 217                | 197.0                 | 1.00                      | 0.33                                                       |
| 10.5<br>10.75        | 218<br>218         | 199.3<br>201.4        | 1.00<br>1.00              | 0.33<br>0.33                                               |
| 10.75                | 219                | 201.4                 | 1.00                      | 0.33                                                       |
| 11.25                | 220                | 205.4                 | 1.00                      | 0.33                                                       |
| 11.5                 | 220                | 207.2                 | 1.00                      | 0.33                                                       |
| 11.75                | 221                | 209.0                 | 1.00                      | 0.33                                                       |
| 12                   | 222                | 210.6                 | 1.00                      | 0.33                                                       |
| 12.25                | 222                | 212.2                 | 1.00                      | 0.33                                                       |
| 12.5                 | 223                | 213.6                 | 1.00                      | 0.33                                                       |
| 12.75                | 223                | 215.0                 | 1.00                      | 0.33                                                       |
| 13<br>13.25          | 224<br>224         | 216.3<br>217.6        | 1.00<br>1.00              | 0.33<br>0.33                                               |
| 13.5                 | 224                | 218.7                 | 1.00                      | 0.33                                                       |
| 13.75                | 225                | 219.8                 | 1.00                      | 0.33                                                       |
| 14                   | 225                | 220.9                 | 1.00                      | 0.33                                                       |
| 14.25                | 225                | 221.8                 | 1.00                      | 0.33                                                       |
| 14.5                 | 226                | 222.8                 | 1.00                      | 0.33                                                       |
| 14.75                | 226                | 223.6                 | 1.00                      | 0.33                                                       |
| 15                   | 226                | 224.4                 | 1.00                      | 0.33                                                       |

Table 5. Central North Pacific male swordfish life history.

| Age Class<br>(yrqtr) | Male Length (cm) | Male Weight<br>(kg) | Male Fraction<br>Mature | Male<br>Natural Mortality<br>(Life History Mean Table 3) |
|----------------------|------------------|---------------------|-------------------------|----------------------------------------------------------|
| 0.25                 | 74               | 7.3                 | 0.02                    | 0.41                                                     |
| 0.5                  | 83               | 10.3                | 0.06                    | 0.40                                                     |
| 0.75                 | 91               | 13.8                | 0.18                    | 0.40                                                     |
| 1                    | 99               | 17.7                | 0.40                    | 0.39                                                     |
| 1.25                 | 106              | 21.9                | 0.64                    | 0.39                                                     |
| 1.5                  | 113              | 26.5                | 0.82                    | 0.38                                                     |
| 1.75                 | 119              | 31.3                | 0.92                    | 0.38                                                     |
| 2<br>2.25            | 125<br>131       | 36.3<br>41.4        | 0.96<br>0.98            | 0.38<br>0.38                                             |
| 2.25                 | 136              | 46.6                | 0.98                    | 0.38                                                     |
| 2.75                 | 141              | 51.9                | 1.00                    | 0.38                                                     |
| 3                    | 145              | 57.1                | 1.00                    | 0.37                                                     |
| 3.25                 | 149              | 62.4                | 1.00                    | 0.37                                                     |
| 3.5                  | 153              | 67.5                | 1.00                    | 0.37                                                     |
| 3.75                 | 157              | 72.6                | 1.00                    | 0.37                                                     |
| 4                    | 160              | 77.6                | 1.00                    | 0.37                                                     |
| 4.25                 | 163              | 82.5                | 1.00                    | 0.37                                                     |
| 4.5                  | 166              | 87.2                | 1.00                    | 0.37                                                     |
| 4.75                 | 169              | 91.7                | 1.00                    | 0.37                                                     |
| 5                    | 172              | 96.2                | 1.00                    | 0.37                                                     |
| 5.25                 | 174              | 100.4               | 1.00                    | 0.37                                                     |
| 5.5                  | 176              | 104.5               | 1.00                    | 0.37                                                     |
| 5.75                 | 179              | 108.4               | 1.00                    | 0.37                                                     |
| 6                    | 181<br>182       | 112.2               | 1.00                    | 0.37<br>0.37                                             |
| 6.25<br>6.5          | 184              | 115.8<br>119.2      | 1.00<br>1.00            | 0.36                                                     |
| 6.75                 | 186              | 122.4               | 1.00                    | 0.36                                                     |
| 7                    | 187              | 125.5               | 1.00                    | 0.36                                                     |
| 7.25                 | 189              | 128.5               | 1.00                    | 0.36                                                     |
| 7.5                  | 190              | 131.3               | 1.00                    | 0.36                                                     |
| 7.75                 | 191              | 133.9               | 1.00                    | 0.36                                                     |
| 8                    | 192              | 136.4               | 1.00                    | 0.36                                                     |
| 8.25                 | 193              | 138.8               | 1.00                    | 0.36                                                     |
| 8.5                  | 195              | 141.0               | 1.00                    | 0.36                                                     |
| 8.75                 | 195              | 143.1               | 1.00                    | 0.36                                                     |
| 9                    | 196              | 145.1               | 1.00                    | 0.36                                                     |
| 9.25                 | 197              | 147.0               | 1.00                    | 0.36                                                     |
| 9.5                  | 198              | 148.8               | 1.00                    | 0.36                                                     |
| 9.75                 | 199              | 150.4               | 1.00                    | 0.36                                                     |
| 10                   | 199              | 152.0               | 1.00                    | 0.36                                                     |
| 10.25                | 200              | 153.5               | 1.00                    | 0.36                                                     |
| 10.5                 | 201              | 154.9               | 1.00                    | 0.36                                                     |
| 10.75<br>11          | 201<br>202       | 156.2<br>157.4      | 1.00<br>1.00            | 0.36<br>0.36                                             |
| 11.25                | 202              | 158.6               | 1.00                    | 0.36                                                     |
| 11.5                 | 203              | 159.6               | 1.00                    | 0.36                                                     |
| 11.75                | 203              | 160.6               | 1.00                    | 0.36                                                     |
| 12                   | 203              | 161.6               | 1.00                    | 0.36                                                     |
| 12.25                | 204              | 162.5               | 1.00                    | 0.36                                                     |
| 12.5                 | 204              | 163.3               | 1.00                    | 0.36                                                     |
| 12.75                | 204              | 164.1               | 1.00                    | 0.36                                                     |
| 13                   | 205              | 164.9               | 1.00                    | 0.36                                                     |
| 13.25                | 205              | 165.5               | 1.00                    | 0.36                                                     |
| 13.5                 | 205              | 166.2               | 1.00                    | 0.36                                                     |
| 13.75                | 205              | 166.8               | 1.00                    | 0.36                                                     |
| 14                   | 206              | 167.4               | 1.00                    | 0.36                                                     |
| 14.25                | 206              | 167.9               | 1.00                    | 0.36                                                     |
| 14.5                 | 206              | 168.4               | 1.00                    | 0.36                                                     |
| 14.75                | 206              | 168.9               | 1.00                    | 0.36                                                     |
| 15                   | 206              | 169.3               | 1.00                    | 0.36                                                     |

Table 6. Central North Pacific combined female and male swordfish life history input to Stock Synthesis.

| Age Class<br>(yrqtr) | Combined Female<br>and Male Length<br>(cm) | Combined<br>Female and<br>Male Weight (kg) | Combined Female<br>and Male Fraction<br>Mature | Average Female and Male<br>Natural Mortality<br>(Life History Mean of Tables 2 and 3) |
|----------------------|--------------------------------------------|--------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|
| 0.25                 | 72                                         | 6.8                                        | 0.01                                           | 0.40                                                                                  |
| 0.5                  | 82                                         | 9.8                                        | 0.03                                           | 0.39                                                                                  |
| 0.75                 | 90                                         | 13.3                                       | 0.09                                           | 0.38                                                                                  |
| 1                    | 98                                         | 17.3                                       | 0.20                                           | 0.38                                                                                  |
| 1.25                 | 106                                        | 21.8                                       | 0.33                                           | 0.37                                                                                  |
| 1.5                  | 113                                        | 26.5                                       | 0.43                                           | 0.37                                                                                  |
| 1.75                 | 120                                        | 31.6                                       | 0.50                                           | 0.37                                                                                  |
| 2                    | 126                                        | 37.0                                       | 0.56                                           | 0.37                                                                                  |
| 2.25                 | 132                                        | 42.5                                       | 0.61                                           | 0.36                                                                                  |
| 2.5                  | 137                                        | 48.2                                       | 0.68                                           | 0.36                                                                                  |
| 2.75                 | 142                                        | 54.0                                       | 0.75                                           | 0.36                                                                                  |
| 3                    | 147                                        | 59.8                                       | 0.82                                           | 0.36                                                                                  |
| 3.25                 | 152                                        | 65.7                                       | 0.87                                           | 0.36                                                                                  |
| 3.5                  | 156                                        | 71.5                                       | 0.91                                           | 0.36                                                                                  |
| 3.75                 | 160                                        | 77.2                                       | 0.94                                           | 0.36                                                                                  |
| 4                    | 164                                        | 82.9                                       | 0.96                                           | 0.36                                                                                  |
| 4.25                 | 167                                        | 88.5                                       | 0.90                                           | 0.36                                                                                  |
|                      | 170                                        | 94.0                                       | 0.98                                           | 0.35                                                                                  |
| 4.5                  |                                            |                                            | 0.99                                           |                                                                                       |
| 4.75                 | 173                                        | 99.3                                       |                                                | 0.35                                                                                  |
| 5                    | 176                                        | 104.4                                      | 0.99                                           | 0.35                                                                                  |
| 5.25                 | 179                                        | 109.5                                      | 0.99                                           | 0.35                                                                                  |
| 5.5                  | 182                                        | 114.3                                      | 0.99                                           | 0.35                                                                                  |
| 5.75                 | 184                                        | 119.0                                      | 1.00                                           | 0.35                                                                                  |
| 6                    | 186                                        | 123.5                                      | 1.00                                           | 0.35                                                                                  |
| 6.25                 | 188                                        | 127.8                                      | 1.00                                           | 0.35                                                                                  |
| 6.5                  | 190                                        | 132.0                                      | 1.00                                           | 0.35                                                                                  |
| 6.75                 | 192                                        | 135.9                                      | 1.00                                           | 0.35                                                                                  |
| 7                    | 194                                        | 139.7                                      | 1.00                                           | 0.35                                                                                  |
| 7.25                 | 195                                        | 143.4                                      | 1.00                                           | 0.35                                                                                  |
| 7.5                  | 197                                        | 146.8                                      | 1.00                                           | 0.35                                                                                  |
| 7.75                 | 198                                        | 150.1                                      | 1.00                                           | 0.35                                                                                  |
| 8                    | 200                                        | 153.3                                      | 1.00                                           | 0.35                                                                                  |
| 8.25                 | 201                                        | 156.3                                      | 1.00                                           | 0.35                                                                                  |
| 8.5                  | 202                                        | 159.1                                      | 1.00                                           | 0.35                                                                                  |
| 8.75                 | 203                                        | 161.8                                      | 1.00                                           | 0.35                                                                                  |
| 9                    | 204                                        | 164.3                                      | 1.00                                           | 0.35                                                                                  |
| 9.25                 | 205                                        | 166.8                                      | 1.00                                           | 0.35                                                                                  |
| 9.5                  | 206                                        | 169.1                                      | 1.00                                           | 0.35                                                                                  |
| 9.75                 | 207                                        | 171.2                                      | 1.00                                           | 0.35                                                                                  |
| 10                   | 208                                        | 173.3                                      | 1.00                                           | 0.35                                                                                  |
| 10.25                | 208                                        | 175.2                                      | 1.00                                           | 0.35                                                                                  |
| 10.5                 | 209                                        | 177.1                                      | 1.00                                           | 0.35                                                                                  |
| 10.75                | 210                                        | 178.8                                      | 1.00                                           | 0.35                                                                                  |
| 11                   | 210                                        | 180.4                                      | 1.00                                           | 0.35                                                                                  |
| 11.25                | 211                                        | 182.0                                      | 1.00                                           | 0.35                                                                                  |
| 11.5                 | 211                                        | 183.4                                      | 1.00                                           | 0.35                                                                                  |
| 11.75                | 212                                        | 184.8                                      | 1.00                                           | 0.35                                                                                  |
| 12                   | 212                                        | 186.1                                      | 1.00                                           | 0.35                                                                                  |
| 12.25                | 213                                        | 187.3                                      | 1.00                                           | 0.35                                                                                  |
| 12.5                 | 213                                        | 188.5                                      | 1.00                                           | 0.35                                                                                  |
| 12.75                | 214                                        | 189.6                                      | 1.00                                           | 0.35                                                                                  |
| 13                   | 214                                        | 190.6                                      | 1.00                                           | 0.35                                                                                  |
| 13.25                | 214                                        | 191.6                                      | 1.00                                           | 0.35                                                                                  |
| 13.5                 | 215                                        | 192.5                                      | 1.00                                           | 0.35                                                                                  |
| 13.75                | 215                                        | 193.3                                      | 1.00                                           | 0.35                                                                                  |
| 14                   | 215                                        | 194.1                                      | 1.00                                           | 0.35                                                                                  |
| 14.25                | 216                                        | 194.9                                      | 1.00                                           | 0.35                                                                                  |
| 14.5                 | 216                                        | 195.6                                      | 1.00                                           | 0.35                                                                                  |
| 14.75                | 216                                        | 196.2                                      | 1.00                                           | 0.35                                                                                  |
| 15                   | 216                                        | 196.9                                      | 1.00                                           | 0.35                                                                                  |

Table 7.1. Sub-Area 1 time series of catch (23) by country, fleet, and region.

|                    |                | time series of eaten (23) by     | , , , , , , , , , , , , , , , , , , , |                    | Percent of total |          |            | Perce         | ent of Annu  | al        |         |
|--------------------|----------------|----------------------------------|---------------------------------------|--------------------|------------------|----------|------------|---------------|--------------|-----------|---------|
|                    |                |                                  |                                       |                    |                  | n (mt)   | FI         | eet/region of | catch (mt) b | y quarter |         |
|                    |                |                                  |                                       |                    | by Fleet         | (Region) |            | 19            | 990-2007     |           |         |
| Fleet              |                |                                  | Annual                                |                    | 1951-            | 1990-    | Quarterly  |               |              |           |         |
| Code               | Country        | Fleet(Region)                    | Catch <sup>1</sup>                    | Years <sup>1</sup> | 1983             | 2007     | Resolution | Q1            | Q2           | Q3        | Q4      |
| F1                 | Japan          | Offshore+Distant Water L. (R1-1) | Υ                                     | 1951 – 2006        | 43.19%           | 16.80%   | Υ          | 49.51%        | 20.99%       | 9.87%     | 19.63%  |
| F2                 | Japan          | Offshore+Distant Water L. (R1-2) | Υ                                     | 1951 – 2006        | 28.03%           | 16.67%   | Υ          | 32.01%        | 22.79%       | 9.55%     | 35.65%  |
| F3                 | Japan          | Offshore+Distant Water L. (R1-3) | Υ                                     | 1960 – 2006        | 2.76%            | 0.74%    | Υ          | 61.73%        | 2.02%        | 7.09%     | 29.16%  |
| F4                 | Japan          | Offshore+Distant Water L. (R1-4) | Υ                                     | 1951 – 2006        | 0.88%            | 0.63%    | Υ          | 18.86%        | 43.30%       | 27.04%    | 10.80%  |
| F5                 | Japan          | Offshore+Distant Water L. (R1-5) | Υ                                     | 1951 – 2006        | 1.39%            | 1.59%    | Υ          | 36.44%        | 39.04%       | 13.49%    | 11.03%  |
| F7 <sup>3</sup>    | Japan          | Driftnet (R1-1)                  | Υ                                     | 1972 – 2006        | 3.90%            | 5.33%    | Υ          | 33.94%        | 12.49%       | 22.29%    | 31.28%  |
| F8                 | Japan          | Driftnet (R1-2)                  | Υ                                     | 1973 – 1993        | 1.14%            | 0.60%    | Υ          | 74.50%        | 23.82%       | 0.92%     | 0.75%   |
| F12 <sup>2</sup>   | Japan          | Other, Primarily Harpoon (R1-1)  | Υ                                     | 1951 – 2006        | 6.94%            | 2.28%    | Υ          | 33.41%        | 12.31%       | 22.79%    | 31.49%  |
| F13                | Japan          | All Other Gears (R1-1)           | Υ                                     | 1951 – 2006        | 3.02%            | 8.30%    | Υ          | 38.98%        | 14.30%       | 8.75%     | 37.96%  |
| F14                | Japan          | All Other Gears (R1-2)           | Υ                                     | 1951 – 1993        | 1.02%            | 0.20%    | Υ          | 76.61%        | 22.01%       | 0.73%     | 0.65%   |
| F16 <sup>2</sup>   | Japan          | All Other Gears (R1-4)           | Υ                                     | 1951 – 2006        | 0.80%            | 2.14%    | Υ          | 25.62%        | 31.19%       | 25.31%    | 17.88%  |
| F19 <sup>2.3</sup> | Chinese Taipei | Distant Water Longline (R1-1)    | Υ                                     | 1995 – 2006        | 0.00%            | 0.00%    | Mirror F1  | -             | -            | -         | -       |
| F20                | Chinese Taipei | Distant Water Longline (R1-2)    | Υ                                     | 1995 – 2006        | 0.00%            | 0.13%    | Mirror F2  | -             | -            | -         | -       |
| F21                | Chinese Taipei | Distant Water Longline (R1-3)    | Υ                                     | 2003 – 2006        | 0.00%            | 0.03%    | Mirror F3  | -             | -            | -         | -       |
| F22                | Chinese Taipei | Distant Water Longline (R1-4)    | Υ                                     | 2001 – 2006        | 0.00%            | 0.01%    | Mirror F4  | -             | -            | -         | -       |
| F23                | Chinese Taipei | Distant Water Longline (R1-5)    | Υ                                     | 2000 – 2006        | 0.00%            | 0.27%    | Mirror F5  | -             | -            | -         | -       |
| F25 <sup>3</sup>   | Chinese Taipei | All Other Gears (Assumed R1-4)   | Υ                                     | 1959 – 2006        | 4.54%            | 12.96%   | Mirror F4  | -             | -            | -         | -       |
| F26                | Korea          | Longline (R1-4)                  | Υ                                     | 1976 – 2006        | 0.02%            | 0.22%    | Mirror F4  | -             | -            | -         | -       |
| F27                | Korea          | Longline (R1-5)                  | Υ                                     | 1976 – 2006        | 0.04%            | 0.54%    | Mirror F5  | -             | -            | -         | -       |
| F29 <sup>3</sup>   | US Hawaii      | Longline (Stratified by Depth)   | Υ                                     | 1976 – 2006        | 0.01%            | 19.28%   | Υ          | 35.37%        | 39.77%       | 11.34%    | 13.52%  |
| F30                | US California  | Gillnet (R1-3)                   | Υ                                     | 1984 – 2006        | 0.83%            | 5.34%    | Assign Q4  | -             | -            | -         | 100.00% |
| F31                | US California  | Longline (R1-3)                  | Υ                                     | 1980 – 2006        | 0.00%            | 5.07%    | Assign Q4  | -             | -            | -         | 100.00% |
| F32 <sup>3</sup>   | US California  | Other Gear + Unknown (R1-3)      | Υ                                     | 1970 – 2006        | 1.50%            | 0.86%    | Assign Q4  | -             | -            | -         | 100.00% |

Table 7.2. Sub-Area 2 time series of catch (5) by country and fleet<sup>1</sup>.

|       |                | (,,,,                       |                    |                    | Percent of total<br>catch (mt)<br>by Fleet(Region) |        | Fl         | Percent of Annual<br>Fleet/region catch (mt) by quarter<br>1990-2007 |        |        |         |
|-------|----------------|-----------------------------|--------------------|--------------------|----------------------------------------------------|--------|------------|----------------------------------------------------------------------|--------|--------|---------|
| Fleet |                |                             | Annual             |                    | 1951-                                              | 1990-  | Quarterly  |                                                                      |        |        |         |
| Code  | Country        | Fleet                       | Catch <sup>1</sup> | Years <sup>2</sup> | 1983                                               | 2007   | Resolution | Q1                                                                   | Q2     | Q3     | Q4      |
| F1    | Japan          | Offshore + Distant Water L. | У                  | 1954 – 2006        | 93.48%                                             | 61.99% | Y          | 27.87%                                                               | 19.49% | 23.48% | 29.15%  |
| F2    | Chinese Taipei | Distant Water Longline      | У                  | 1967 – 2006        | 0.50%                                              | 8.80%  | Mirror F1  | -                                                                    | -      | -      | -       |
| F3    | Korea          | Longline                    | У                  | 1976 – 2005        | 0.76%                                              | 7.84%  | Mirror F1  | -                                                                    | -      | -      | -       |
| F4    | Spain          | Longline                    | y                  | 1998 – 2006        | 0.00%                                              | 4.04%  | Mirror F1  |                                                                      |        |        |         |
| F5    | Mexico         | All Gears                   | у                  | 1980 – 2006        | 5.26%                                              | 17.33% | Assign Q4  | -                                                                    | -      | -      | 100.00% |

First year with catch greater than 10 mt to last year with catch, adapted from Courtney and Wagatsuma (2009).

Five Fleets (Regions) had total catch < 10 mt: F9 Japan Driftnet (R3), 8 mt; F10 Japan Driftnet (R4), 6 mt; F11 Japan Driftnet (R5), 1 mt; F15 Japan All Other Gears (R3), 1 mt; F17 Japan All Other Gears (R5).

<sup>&</sup>lt;sup>3</sup> Five Fleets (Regions) were entirely in Sub-Area 2: F6 Japan Offshore+Distant Water L. (R6), F18 Japan All Other Gears R6, F24 Chinese Taipei Distant Water Longline (R6), F28 Korea Longline (R6), F33 Mexico All Gears.

<sup>&</sup>lt;sup>1</sup>Udated catch for Sub-Area 2 (BILL-WG 2009c) (Appendix A).
<sup>2</sup>First year with catch greater than 10 mt to last year with catch, adapted from (BILL-WG 2009c) (Appendix A).

Table 8.1. Sub-Area 1 time series of length frequency (9) by country, fleet, and region.

| Fleet |                        |                                  | Annual              |                           | Quarterly  | Length        |
|-------|------------------------|----------------------------------|---------------------|---------------------------|------------|---------------|
| Code  | Country                | Fleet(Region)                    | Length <sup>1</sup> | Years <sup>2</sup>        | Resolution | Selectivity   |
| F1    | Japan                  | Offshore+Distant Water L. (R1-1) | Y                   | 1970 – 2006               | Y          | Dome          |
|       |                        |                                  |                     | 1970 – 1972,              |            |               |
| F2    | Japan                  | Offshore+Distant Water L. (R1-2) | Υ                   | 1974 – 2006               | Υ          | Logistic      |
| F3    | Japan                  | Offshore+Distant Water L. (R1-3) | Υ                   | 1987, 1992, 2005          | Assign Q1  | Logistic      |
|       |                        |                                  |                     | 1976 – 1979, 1981,        |            |               |
|       |                        |                                  |                     | 1983 – 2003,              |            |               |
| F4    | Japan                  | Offshore+Distant Water L. (R1-4) | Υ                   | 2005, 2006                | Υ          | Logistic      |
|       |                        |                                  |                     | 1974, 1978,               |            |               |
|       |                        |                                  |                     | 1983 – 1997, 1999 – 2002, |            |               |
| F5    | Japan                  | Offshore+Distant Water L. (R1-5) | Υ                   | 2006                      | Assign Q2  | Logistic      |
| F7    | Japan                  | Driftnet (R1-1)                  | Υ                   | 2004 – 2006               | Assign Q1  | Logistic      |
| F8    | Japan                  | Driftnet (R1-2)                  | N                   | -                         | Mirror F7  | Mirror F7     |
| F12   | Japan                  | Other, Primarily Harpoon (R1-1)  | Υ                   | 2006                      | Assign Q1  | Modified Dome |
| F13   | Japan                  | All Other Gears (R1-1)           | N                   | -                         | Mirror F1  | Mirror F1     |
| F14   | Japan                  | All Other Gears (R1-2)           | N                   | -                         | Mirror F2  | Mirror F2     |
| F16   | Japan                  | All Other Gears (R1-4)           | N                   | -                         | Mirror F3  | Mirror F3     |
| F19   | Chinese Taipei         | Distant Water Longline (R1-1)    | N                   | -                         | Mirror F1  | Mirror F1     |
| F20   | Chinese Taipei         | Distant Water Longline (R1-2)    | N                   | -                         | Mirror F2  | Mirror F2     |
| F21   | Chinese Taipei         | Distant Water Longline (R1-3)    | N                   | -                         | Mirror F3  | Mirror F3     |
| F22   | Chinese Taipei         | Distant Water Longline (R1-4)    | N                   | -                         | Mirror F4  | Mirror F4     |
| F23   | Chinese Taipei         | Distant Water Longline (R1-5)    | N                   | -                         | Mirror F5  | Mirror F5     |
| F25   | Chinese Taipei         | All Other Gears (Assume R1-4)    | N                   | -                         | Mirror F4  | Mirror F4     |
| F26   | Korea                  | Longline (R1-4)                  | N                   | -                         | Mirror F4  | Mirror F4     |
| F27   | Korea                  | Longline (R1-5)                  | N                   | -                         | Mirror F5  | Mirror F5     |
| F29   | US Hawaii              | Longline (Stratified by Depth)   | Υ                   | 1994 – 2001, 2004 – 2006  | Υ          | Logistic      |
| F30   | US California          | Gillnet (R1-3)                   | Υ                   | 1981 – 2006               | Υ          | Logistic      |
| F31   | US California          | Longline (R1-3)                  | N                   | -                         | Mirror F30 | Mirror F30    |
| F32   | US California          | Other Gear+Unknown (R1-3)        | N                   | -                         | Mirror F30 | Mirror F30    |
| 1 0   | rr and Elatahan (2000) |                                  |                     |                           |            |               |

Table 8.2. Sub-Area 2 time series of length frequency (1) by country and fleet.

| Fleet |                |                          | Annual              |                                   | Quarterly  | Length      |
|-------|----------------|--------------------------|---------------------|-----------------------------------|------------|-------------|
| Code  | Country        | Fleet                    | Length <sup>1</sup> | Years <sup>2</sup>                | Resolution | Selectivity |
| F1    | Japan          | Offshore + Distant Water | Υ                   | 1970 – 1980, 1984,<br>1986 – 2006 | Υ          | Logistic    |
| F2    | Chinese Taipei | Distant Water Longline   | N                   | -                                 | Mirror F1  | Mirror F1   |
| F3    | Korea          | Longline                 | N                   | -                                 | Mirror F1  | Mirror F1   |
| F4    | Spain          | Longline                 | N                   | -                                 | Mirror F1  | Mirror F1   |
| F5    | Mexico         | All Gears                | N                   | -                                 | Mirror F1  | Mirror F1   |

<sup>&</sup>lt;sup>1</sup> Courtney and Fletcher (2009)
<sup>2</sup> Years with annual or quarterly length frequency sample size greater than 100 fish were included in the assessment.

<sup>&</sup>lt;sup>1</sup> Courtney and Fletcher (2009)
<sup>2</sup> Years with annual or quarterly length frequency sample size greater than 100 fish.

Table 9.1. Sub-Area 1 time series of CPUE (3) by country and fleet.

| Survey<br>Code   | Country        | Fleet                                 | Annual<br>CPUE <sup>1</sup> | Years                       | Quarterly Resolution | Length<br>Selectivity |
|------------------|----------------|---------------------------------------|-----------------------------|-----------------------------|----------------------|-----------------------|
| S1               | Japan          | Offshore + Distant Water (Sub-Area 1) | Υ                           | 1952 – 2006                 | Assign Q1            | Mirror F1             |
| S8 <sup>2</sup>  | Chinese Taipei | Distant Water<br>(Sub-Area 1)         | Υ                           | 1995 – 2006                 | Assign Q2            | Mirror F5             |
| S15 <sup>2</sup> | US             | Hawaii Longline<br>Shallow-Set        | Y                           | 1995 – 2000,<br>2004 - 2006 | Assign Q2            | Mirror F29            |

Table 9.2. Sub-Area 2 time series of CPUE (2) by country and fleet.

| Survey<br>Code | Country        | Fleet                                    | Annual<br>CPUE <sup>1</sup> | Years       | Quarterly Resolution | Length<br>Selectivity |
|----------------|----------------|------------------------------------------|-----------------------------|-------------|----------------------|-----------------------|
| S1             | Japan          | Offshore + Distant Water<br>(Sub-Area 2) | Y                           | 1955 – 2006 | Assign Q4            | Mirror F1             |
| S2             | Chinese Taipei | Distant Water<br>(Sub-Area 2)            | Y                           | 1995 – 2006 | Assign Q4            | Mirror F1             |

<sup>&</sup>lt;sup>1</sup> Courtney and Wagatsuma (2009, Table 4)

<sup>&</sup>lt;sup>1</sup> Courtney and Wagatsuma (2009, Table 4)
<sup>2</sup> Several exploratory CPUE time series were examined but not fit in the likelihood.

Table 10. Base case models for Sub-Area 1 and Sub-Area 2 under a two-stock scenario resulting from ISC BILLWG review of a single stock scenario (BILLWG 2009b) and a review of swordfish spawning in the North Pacific based on larval occurrence (Appendix B).

Model

| Component                            | Sub-Area 1 Sub-Area 2                                                                                                                     |                                                                                    |  |  |  |  |  |  |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Nat. Mort. (M)                       | Linked to life history (C                                                                                                                 | Linked to life history (Central North Pacific)                                     |  |  |  |  |  |  |  |
| Steepness (h)                        | 0.9                                                                                                                                       |                                                                                    |  |  |  |  |  |  |  |
| sigma_r                              | Iteratively re-weighte                                                                                                                    | Iteratively re-weighted once from 0.6                                              |  |  |  |  |  |  |  |
| Sexual<br>Dimorphism                 | Sex-com                                                                                                                                   | Sex-combined                                                                       |  |  |  |  |  |  |  |
| Spawning                             | Assign Q2 (April                                                                                                                          | l, May, June)                                                                      |  |  |  |  |  |  |  |
| Effective<br>Sample Size<br>for CPUE | Iteratively re-weighted once from input standard error of GLMs                                                                            | Input standard error of GLMs                                                       |  |  |  |  |  |  |  |
| Initial<br>Equilibrium<br>Catch      | Assumed initial catch = 10,512 mt (average catch from Japan Offshore + Distant Water Longline R1-1 and R1-2 during the years 1951 – 1955) | Assumed to be unfished prior to 1955                                               |  |  |  |  |  |  |  |
| Catch                                | Sub-Area time series of catch regionally stratified by country and fleet (Regions 1-1 to 1-5)                                             | Sub-Area time series of catch for one region by country and fleet (Region 2-1)     |  |  |  |  |  |  |  |
| CPUE                                 | Sub-Area wide indices (3) by country and fleet (S1, S8, S15)                                                                              | Sub-Area area wide indices (2) by country and fleet (S1 and S2)                    |  |  |  |  |  |  |  |
| Length                               | Sub-Area time series of length frequency regionally stratified by country and fleet (Regions 1-1 to 1-5)                                  | Sub-Area time series of length frequency for one region (Region 2-1) and one fleet |  |  |  |  |  |  |  |

Table 11.1. Sub-Area 1 time blocks for length based selectivity.

| Country                    | Fleet(Region)                 | Component             | Block 1     | Block 2     | Block 3     |  |
|----------------------------|-------------------------------|-----------------------|-------------|-------------|-------------|--|
|                            | Offshore + Distant Water      | Length                |             |             |             |  |
| Japan <sup>1</sup>         | (F1,F2, F4, F5)               | Selectivity           | 1951 – 1983 | 1984 – 1993 | 1994 – 2006 |  |
| US Hawaii <sup>2</sup>     | Longline Shallow-Set<br>(F29) | Length<br>Selectivity | 1995 – 2003 | 2004 – 2006 |             |  |
| OOTIAWAII                  | Gillnet                       | Length                | 1000 – 2000 | 2004 – 2000 |             |  |
| US California <sup>3</sup> | (F30)                         | Selectivity           | 1980 – 1999 | 2000 - 2006 |             |  |

<sup>&</sup>lt;sup>1</sup> Ishimura et al. 2008, Okamoto and Bayliff (2003)
<sup>2</sup> Ito and Childers 2008.
<sup>3</sup> Piner and Betcher 2009

Table 11.2. Sub-Area 2 time blocks for length based selectivity.

| Country            | Fleet(Region)            | Component   | Block 1     | Block 2     | Block 3     |  |
|--------------------|--------------------------|-------------|-------------|-------------|-------------|--|
|                    | Offshore + Distant Water | Length      |             |             |             |  |
| Japan <sup>1</sup> | (F1)                     | Selectivity | 1955 – 1983 | 1984 – 1993 | 1994 – 2006 |  |

<sup>&</sup>lt;sup>1</sup>Ishimura et al. 2008, Okamoto and Bayliff (2003)

Table 12.1. Sub-Area 1 Stock Synthesis model estimates of effective sample size and the variance adjustments applied to each model.

|           |                |                                 |     | Model       |          |           |
|-----------|----------------|---------------------------------|-----|-------------|----------|-----------|
|           |                |                                 |     | Estimate    |          | +Var Adj  |
|           | Likelihood     | Component                       | Ν   | (R.M.S.E)   | Input SE | Sub-Area1 |
| Sigma r   |                |                                 | 36  | 0.429707    | 0.6      | -0.170293 |
|           |                |                                 |     |             |          |           |
|           |                |                                 |     | Model       |          |           |
|           |                |                                 |     | Estimate    | Mean     | +Var Adj  |
| CPUE      | Country        | Fleet                           | Ν   | (R.M.S.E)   | Input SE | Sub-Area1 |
|           | •              | Offshore + Distant Water L.     |     | ,           |          |           |
| S1        | Japan          | (All Regions)                   | 55  | 0.16        | 0.14     | 0.02      |
|           |                | Distant Water Longline          |     |             |          |           |
| S8        | Chinese Taipei | (All Regions)                   | 12  | 0.45        | 0.46     | -0.01     |
| S15       | US Hawaii      | Longline Shallow-Set            | 9   | 0.25        | 0.15     | 0.10      |
|           |                |                                 |     | Model       | Mean     |           |
| Length    |                |                                 |     | Estimate    | Input    | *n Adi    |
| Frequency | Country        | Fleet (Region)                  | Ν   | Mean Eff. n | Sqrt(n)  | Sub-Area1 |
| F1        | Japan          | Offshore + Distant Water (R1-1) | 133 | 226.1       | 61.8     | 1         |
| F2        | Japan          | Offshore + Distant Water (R1-2) | 115 | 267.8       | 57.3     | 1         |
| F3        | Japan          | Offshore + Distant Water (R1-3) | 3   | 94.3        | 13.7     | 1         |
| F4        | Japan          | Offshore + Distant Water (R1-4) | 78  | 120.6       | 16.0     | 1         |
| F5        | Japan          | Offshore + Distant Water (R1-5) | 21  | 134.1       | 17.5     | 1         |
| F7        | Japan          | Driftnet (R1-1)                 | 3   | 370.8       | 36.9     | 1         |
| F12       | Japan          | Other, Primarily Harpoon (R1-1) | 1   | 189.1       | 22.3     | 1         |
| F29       | US Hawaii      | Longline (Stratified by Depth)  | 33  | 202.6       | 31.9     | 1         |
| F30       | US California  | Gillnet (R1-3)                  | 48  | 152.8       | 25.6     | 1         |

Table 12.2. Sub-Area 2 Stock Synthesis model estimates of effective sample size and the variance adjustments applied to each model.

|                     | Likelihood              | Component                         | N       | Model<br>Estimate<br>(R.M.S.E)   | Input SE                 | +Var Adj<br>Sub-Area 2 |
|---------------------|-------------------------|-----------------------------------|---------|----------------------------------|--------------------------|------------------------|
| Sigma r             |                         |                                   | 36      | 0.510413                         | 0.6                      | -0.089587              |
| 00115               |                         |                                   | NI.     | Model<br>Estimate                | Mean                     | +Var Adj               |
| S1                  | Country                 | Fleet Offshore + Distant Water L. | N<br>52 | (R.M.S.E)<br>0.33                | Input SE<br>0.13         | Sub-Area 2<br>0.00     |
| S2                  | Japan<br>Chinese Taipei | Distant Water Longline            | 12      | 0.30                             | 0.13                     | 0.00                   |
| Length<br>Frequency | Country                 | Fleet (Region)                    | N       | Model<br>Estimate<br>Mean Eff. n | Mean<br>Input<br>Sqrt(n) | *n_Adj<br>Sub-Area 2   |
| F1                  | Japan                   | Offshore + Distant Water I        | 111     | 125 6                            | 18.5                     | 1                      |

Table 13.1. Sub-Area 1 Stock Synthesis (SS) estimated time-series of female spawning biomass (S), recruitment (R), total biomass (B), and age 2+ biomass (B\_2+); Along with Bayesian surplus production (BSP) estimates of mean exploitable biomass (BSP Mean Biomass) and 95% confidence intervals (BSP MCMC 2.5%, 97.5%).

| -         |            | iass (Da |          | oioinas |        |        | ence intervals (BSP M |                  |                  |
|-----------|------------|----------|----------|---------|--------|--------|-----------------------|------------------|------------------|
| Year      | SS         |          | SS       |         | SS     | SS     | BSP <sup>1</sup>      | BSP <sup>1</sup> | BSP <sup>1</sup> |
|           |            |          | R        |         |        | B_2+   | MCMC                  | Mean             | MCMC             |
|           | S (mt)     | s.e.     | (1.000s) | s.e.    | B (mt) | (mt)   | 2.5%                  | Biomass          | 97.5%            |
| Virgin    | 41,487     | 584      | 691      | 10      |        |        |                       |                  |                  |
| 1951      | 18,277     | 620      | 435      | 136     | 54,225 | 45,555 | 58,850                | 96,300           | 149,300          |
| 1952      | 17,818     | 598      | 549      | 176     | 53,839 | 45,287 | 48,170                | 80,600           | 127,700          |
| 1953      | 17,280     | 655      | 543      | 181     | 50,038 | 44,654 | 44,050                | 74,190           | 118,300          |
| 1954      | 14,737     | 1,001    | 604      | 211     | 45,258 | 38,524 | 46,060                | 76,910           | 122,600          |
| 1955      | 12,359     | 1,276    | 924      | 313     | 39,576 | 32,902 | 44,480                | 74,210           | 119,100          |
|           |            |          |          |         |        |        |                       |                  |                  |
| 1956      | 9,413      | 1,332    | 930      | 337     | 35,096 | 27,732 | 42,240                | 70,300           | 112,200          |
| 1957      | 8,040      | 1,275    | 763      | 294     | 34,506 | 23,315 | 42,920                | 71,250           | 113,500          |
| 1958      | 7,947      | 1,249    | 1,083    | 319     | 36,740 | 25,466 | 47,370                | 77,460           | 122,900          |
| 1959      | 7,926      | 1,119    | 779      | 270     | 33,748 | 24,613 | 44,000                | 72,580           | 115,800          |
| 1960      | 6,893      | 944      | 676      | 228     | 34,789 | 21,939 | 44,400                | 72,910           | 115,700          |
| 1961      | 6,349      | 933      | 623      | 208     | 30,645 | 21,480 | 40,860                | 69,070           | 111,700          |
| 1962      | 5,888      | 822      | 609      | 207     | 25,009 | 17,163 | 36,610                | 64,750           | 107,700          |
| 1963      | 6,772      | 1,015    | 626      | 206     | 26,242 | 18,766 | 39,720                | 69,230           | 113,500          |
| 1964      |            | 1,213    | 523      | 173     | 28,389 | 21,059 | 41,090                | 70,840           |                  |
|           | 8,066      |          |          |         |        |        |                       |                  | 115,300          |
| 1965      | 9,687      | 1,279    | 507      | 168     | 32,890 | 25,181 | 44,890                | 75,550           | 121,200          |
| 1966      | 10,200     | 1,250    | 617      | 186     | 33,557 | 27,173 | 44,010                | 74,130           | 119,200          |
| 1967      | 9,527      | 1,206    | 523      | 155     | 32,519 | 26,333 | 40,380                | 68,480           | 110,000          |
| 1968      | 9,315      | 1,128    | 357      | 103     | 31,633 | 24,128 | 37,650                | 64,230           | 103,500          |
| 1969      | 9,224      | 1,011    | 484      | 103     | 30,897 | 24,531 | 37,360                | 64,080           | 103,500          |
| 1970      | 9,801      | 911      | 426      | 89      | 30,123 | 25,728 | 39,310                | 66,960           | 107,300          |
| 1971      | 9,501      | 826      | 226      | 62      | 29,926 | 23,964 | 40,330                | 68,420           | 109,800          |
| 1972      | 9,435      | 744      | 1,036    | 123     | 29,864 | 24,629 | 41,610                | 70,300           | 113,200          |
| 1973      | 9,424      | 773      | 676      | 122     | 27,688 | 24,852 | 45,370                | 76,150           |                  |
|           |            |          |          |         |        |        |                       |                  | 121,700          |
| 1974      | 9,925      | 805      | 423      | 86      | 34,233 | 21,456 | 48,700                | 81,300           | 129,000          |
| 1975      | 11,842     | 838      | 493      | 74      | 39,602 | 31,292 | 48,600                | 81,080           | 129,100          |
| 1976      | 12,833     | 858      | 487      | 69      | 39,303 | 34,093 | 48,270                | 81,020           | 129,600          |
| 1977      | 12,289     | 842      | 533      | 71      | 37,014 | 30,943 | 44,640                | 75,690           | 121,500          |
| 1978      | 11,223     | 784      | 609      | 79      | 34,529 | 28,546 | 43,240                | 73,110           | 117,100          |
| 1979      | 9,581      | 717      | 626      | 81      | 31,614 | 25,077 | 43,970                | 74,990           | 120,600          |
| 1980      | 9,626      | 675      | 622      | 78      | 31,646 | 24,193 | 47,770                | 81,050           | 130,300          |
| 1981      | 10,058     | 657      | 502      | 70      | 34,163 | 26,440 | 49,360                | 83,100           | 133,400          |
| 1982      | 11,107     | 658      | 913      | 77      | 36,191 | 28,516 | 50,930                | 85,640           | 137,600          |
|           |            |          |          |         |        |        |                       |                  |                  |
| 1983      | 11,595     | 654      | 1,044    | 79      | 37,090 | 30,871 | 57,410<br>50,740      | 96,370           | 154,400          |
| 1984      | 11,766     | 648      | 505      | 60      | 40,393 | 29,139 | 58,710                | 99,360           | 159,800          |
| 1985      | 12,863     | 665      | 707      | 53      | 46,104 | 33,374 | 64,140                | 109,400          | 177,200          |
| 1986      | 13,768     | 693      | 533      | 49      | 44,337 | 38,185 | 63,330                | 109,700          | 178,900          |
| 1987      | 13,880     | 710      | 833      | 57      | 44,260 | 35,618 | 66,050                | 113,400          | 185,200          |
| 1988      | 13,326     | 708      | 667      | 56      | 41,638 | 35,105 | 63,550                | 109,100          | 178,200          |
| 1989      | 13,393     | 698      | 483      | 49      | 43,290 | 33,048 | 59,140                | 101,000          | 163,900          |
| 1990      | 13,910     | 678      | 823      | 54      | 44,895 | 36,682 | 60,230                | 101,900          | 164,500          |
| 1991      | 14,464     | 642      | 884      | 60      | 43,599 | 37,620 | 57,820                | 97,430           | 156,600          |
| 1992      | 13,582     | 581      | 647      | 56      | 44,688 | 34,568 | 57,900                | 96,930           | 155,400          |
|           |            |          |          |         |        |        |                       |                  |                  |
| 1993      | 12,449     | 528      | 609      | 52      | 43,878 | 33,119 | 52,160                | 88,420           | 142,800          |
| 1994      | 11,832     | 526      | 670      | 54      | 40,110 | 32,297 | 42,510                | 73,310           | 119,300          |
| 1995      | 12,035     | 536      | 676      | 50      | 38,784 | 31,310 | 36,260                | 61,920           | 100,500          |
| 1996      | 11,796     | 527      | 242      | 36      | 38,851 | 30,624 | 34,510                | 58,290           | 93,940           |
| 1997      | 11,850     | 512      | 987      | 52      | 39,788 | 31,486 | 31,980                | 53,500           | 86,040           |
| 1998      | 11,432     | 495      | 825      | 59      | 34,748 | 31,729 | 31,650                | 53,260           | 85,370           |
| 1999      | 10,397     | 476      | 393      | 48      | 36,851 | 24,727 | 35,530                | 59,370           | 94,850           |
| 2000      | 10,748     | 493      | 492      | 50      | 39,628 | 29,526 | 40,330                | 67,080           | 106,800          |
| 2001      | 11,629     | 553      | 566      | 56      | 36,630 | 31,809 | 42,460                | 72,060           | 116,300          |
| 2001      | 11,824     |          | 619      |         | 35,716 |        | 43,170                | 72,620           |                  |
|           |            | 604      |          | 70      |        | 29,637 |                       | ·                | 116,400          |
| 2003      | 11,448     | 633      | 788      | 85      | 35,224 | 28,241 | 40,480                | 68,050           | 108,600          |
| 2004      | 10,857     | 678      | 473      | 68      | 35,358 | 27,730 | 40,650                | 68,040           | 108,500          |
| 2005      | 11,084     | 816      | 356      | 75      | 38,444 | 28,769 | 41,960                | 69,980           | 111,300          |
| 2006      | 11,796     | 1,100    | 589      | 253     | 38,239 | 32,424 | 44,800                | 74,910           | 119,500          |
| 1 (BILL W | VG 2009b). |          |          |         |        |        | <u> </u>              |                  |                  |

<sup>1</sup> (BILLWG 2009b).

Table 13.2. Sub-Area 2 Stock Synthesis (SS) estimated time-series of female spawning biomass (S), recruitment (R), total biomass (B), and age 2+ biomass (B\_2+); Along with Bayesian surplus production (BSP) estimates of mean exploitable biomass (BSP Mean Biomass) and 95% confidence intervals (BSP MCMC 2.5%, 97.5%)<sup>1</sup>.

|           | SS       | 1033 (DD1 |          | Omass | SS           | SS      | BSP <sup>1</sup> | BSP <sup>1</sup> | BSP <sup>1</sup> |
|-----------|----------|-----------|----------|-------|--------------|---------|------------------|------------------|------------------|
| Year      | 33       |           | SS       |       | 33           |         |                  |                  |                  |
|           | <b>.</b> |           | R        |       | <b>5</b> ( ) | B_2+    | MCMC             | Mean             | MCMC             |
| Vincia    | S (mt)   | s.e.      | (1.000s) | s.e.  | B (mt)       | (mt)    | 2.5%             | Biomass          | 97.5%            |
| Virgin    | 48,774   | 10,104    | 813      | 168   | 440.006      | 100 110 | 0.004            | 04.700           | 47.700           |
| 1955      | 48,773   | 10,104    | 462      | 167   | 119,306      | 109,113 | 8,901            | 24,700           | 47,700           |
| 1956      | 48,756   | 10,101    | 423      | 152   | 119,276      | 109,102 | 9,866            | 23,740           | 45,310           |
| 1957      | 48,243   | 9,997     | 429      | 153   | 114,881      | 109,094 | 15,590           | 34,780           | 62,770           |
| 1958      | 46,241   | 9,613     | 526      | 192   | 107,855      | 102,553 | 14,570           | 31,900           | 58,420           |
| 1959      | 43,072   | 8,991     | 751      | 289   | 100,002      | 94,612  | 12,300           | 27,660           | 51,810           |
| 1960      | 39,694   | 8,297     | 1,081    | 432   | 93,631       | 87,025  | 14,430           | 31,690           | 58,630           |
| 1961      | 37,281   | 7,791     | 1,059    | 413   | 91,468       | 82,039  | 19,850           | 42,220           | 76,220           |
| 1962      | 36,859   | 7,799     | 835      | 323   | 95,580       | 82,033  | 24,350           | 51,330           | 91,810           |
| 1963      | 38,809   | 8,503     | 698      | 265   | 102,540      | 89,289  | 27,920           | 58,140           | 103,600          |
| 1964      | 41,450   | 9,500     | 716      | 271   | 106,979      | 96,546  | 27,860           | 58,880           | 106,300          |
| 1965      |          |           | 857      |       |              |         | 26,230           |                  |                  |
|           | 43,670   | 10,215    |          | 332   | 108,327      | 99,593  |                  | 56,200           | 102,500          |
| 1966      | 44,470   | 10,439    | 1,141    | 434   | 108,847      | 99,874  | 27,570           | 58,520           | 105,300          |
| 1967      | 44,330   | 10,378    | 1,342    | 481   | 109,292      | 98,546  | 27,300           | 58,390           | 106,400          |
| 1968      | 44,850   | 10,405    | 931      | 328   | 114,167      | 99,868  | 29,390           | 62,490           | 113,000          |
| 1969      | 46,649   | 10,838    | 1,219    | 342   | 122,943      | 106,171 | 34,220           | 71,070           | 127,800          |
| 1970      | 47,791   | 11,572    | 703      | 280   | 123,557      | 111,951 | 33,300           | 72,100           | 131,400          |
| 1971      | 50,468   | 12,170    | 720      | 345   | 128,921      | 113,710 | 29,080           | 64,070           | 118,000          |
| 1972      | 52,854   | 12,499    | 938      | 490   | 130,194      | 121,395 | 29,120           | 62,850           | 115,100          |
| 1973      | 52,809   | 12,456    | 598      | 396   | 127,838      | 118,812 | 31,630           | 67,330           | 122,200          |
| 1974      | 51,267   | 12,219    | 1,234    | 516   | 125,063      | 113,353 | 31,690           | 67,420           | 122,000          |
| 1975      | 49,859   | 11,976    | 862      | 432   | 120,327      | 112,806 | 31,570           | 66,960           | 120,700          |
| 1976      | 48,460   | 11,841    | 846      | 328   | 120,327      | 106,494 | 30,780           | 65,320           | 117,400          |
|           |          |           |          |       |              |         | •                |                  |                  |
| 1977      | 48,156   | 11,865    | 401      | 199   | 121,413      | 110,632 | 31,060           | 65,420           | 117,700          |
| 1978      | 47,995   | 11,886    | 633      | 276   | 120,009      | 109,458 | 27,220           | 57,980           | 105,600          |
| 1979      | 47,231   | 11,691    | 444      | 224   | 112,939      | 107,911 | 24,860           | 53,360           | 96,760           |
| 1980      | 44,730   | 11,094    | 430      | 208   | 106,811      | 98,908  | 24,170           | 51,310           | 92,870           |
| 1981      | 41,112   | 10,276    | 361      | 173   | 97,769       | 92,227  | 21,330           | 46,000           | 83,710           |
| 1982      | 36,963   | 9,396     | 380      | 185   | 87,741       | 82,393  | 19,050           | 41,300           | 75,730           |
| 1983      | 33,087   | 8,545     | 873      | 401   | 78,635       | 74,132  | 17,800           | 39,180           | 71,960           |
| 1984      | 29,833   | 7,764     | 1,491    | 465   | 71,254       | 66,488  | 14,400           | 32,440           | 61,170           |
| 1985      | 28,114   | 7,258     | 456      | 219   | 72,127       | 61,162  | 16,250           | 35,530           | 65,670           |
| 1986      | 29,433   | 7,401     | 385      | 175   | 84,382       | 65,759  | 20,330           | 43,090           | 78,160           |
| 1987      | 33,044   | 8,003     | 568      | 232   | 87,765       | 82,069  | 22,820           | 47,820           | 85,990           |
| 1988      |          |           | 709      | 268   |              |         |                  |                  |                  |
|           | 34,711   | 8,378     |          |       | 85,365       | 80,542  | 20,690           | 44,190           | 80,010           |
| 1989      | 33,703   | 8,253     | 641      | 239   | 81,733       | 74,618  | 20,410           | 43,430           | 78,910           |
| 1990      | 31,933   | 7,893     | 624      | 229   | 80,414       | 71,548  | 22,080           | 45,610           | 81,950           |
| 1991      | 29,707   | 7,637     | 637      | 240   | 76,327       | 68,335  | 19,620           | 41,410           | 75,360           |
| 1992      | 28,720   | 7,492     | 702      | 239   | 74,450       | 66,651  | 19,750           | 41,280           | 74,590           |
| 1993      | 27,535   | 7,398     | 626      | 228   | 71,583       | 63,632  | 18,830           | 40,470           | 74,410           |
| 1994      | 27,427   | 7,396     | 903      | 294   | 71,735       | 62,969  | 18,480           | 39,680           | 72,830           |
| 1995      | 27,744   | 7,488     | 953      | 333   | 71,989       | 64,178  | 19,720           | 42,090           | 75,850           |
| 1996      | 28,635   | 7,644     | 1,003    | 344   | 76,111       | 64,844  | 24,830           | 51,860           | 93,140           |
| 1997      | 30,417   | 7,961     | 695      | 324   | 82,190       | 70,299  | 30,670           | 62,380           | 109,900          |
| 1998      | 31,816   | 8,443     | 1,869    | 557   | 86,690       | 74,266  | 29,610           | 61,470           | 109,700          |
| 1999      | 33,057   | 9,002     | 1,647    | 532   | 86,160       | 77,500  | 26,710           | 57,850           | 105,700          |
| 2000      |          |           |          | 298   |              |         |                  |                  | 131,400          |
|           | 36,245   | 9,704     | 617      |       | 102,623      | 79,322  | 34,840           | 73,310           |                  |
| 2001      | 41,284   | 11,003    | 825      | 298   | 119,012      | 98,578  | 39,990           | 85,020           | 152,200          |
| 2002      | 46,494   | 12,453    | 896      | 315   | 121,429      | 113,733 | 36,850           | 80,230           | 144,500          |
| 2003      | 48,411   | 13,208    | 797      | 317   | 120,317      | 110,035 | 35,600           | 76,100           | 137,300          |
| 2004      | 47,286   | 13,220    | 939      | 331   | 117,644      | 106,480 | 33,130           | 71,030           | 128,800          |
| 2005      | 45,787   | 12,935    | 347      | 185   | 113,696      | 103,741 | 29,880           | 64,430           | 117,200          |
| 2006      | 45,084   | 12,672    | 712      | 393   | 113,143      | 101,437 | 32,950           | 69,540           | 125,300          |
| 1(Brodzia | k 2010)  |           |          |       |              |         |                  |                  |                  |

<sup>1</sup>(Brodziak 2010).

Table 14.1 Sub-Area 1 Stock Synthesis (SS) estimated time series of annual fishing mortality (F) (the sum of quarterly fishing mortality for all fleets), and total exploitation (Catch mt)/( $B_2+$  mt); Along with Bayesian surplus production (BSP) estimates of mean exploitable biomass harvest rates (BSP Mean Harvest Rate) and 95% confidence intervals (BSP MCMC 2.5%, 97.5%)<sup>1</sup>.

| Commu | SS   | itei vais | SS SS  | BSP <sup>1</sup> | BSP <sup>1</sup>  | BSP <sup>1</sup> |
|-------|------|-----------|--------|------------------|-------------------|------------------|
| Year  | F    | s.e.      | C/B_2+ | MCMC 2.5%        | Mean Harvest Rate | MCMC 97.5%       |
| 1951  | 0.69 | 0.105     | 0.26   | 0.078            | 0.13              | 0.198            |
|       | 0.55 |           | 0.26   | 0.078            | 0.15              | 0.198            |
| 1952  | 0.55 | 0.070     |        |                  |                   |                  |
| 1953  |      | 0.042     | 0.28   | 0.105            | 0.18              | 0.282            |
| 1954  | 0.52 | 0.044     | 0.35   | 0.111            | 0.19              | 0.295            |
| 1955  | 0.64 | 0.069     | 0.43   | 0.118            | 0.20              | 0.317            |
| 1956  | 0.85 | 0.116     | 0.56   | 0.138            | 0.23              | 0.367            |
| 1957  | 0.98 | 0.152     | 0.65   | 0.134            | 0.23              | 0.353            |
| 1958  | 1.38 | 0.221     | 0.77   | 0.160            | 0.27              | 0.415            |
| 1959  | 1.35 | 0.172     | 0.76   | 0.162            | 0.27              | 0.425            |
| 1960  | 1.95 | 0.173     | 1.00   | 0.190            | 0.32              | 0.494            |
| 1961  | 2.39 | 0.168     | 0.98   | 0.189            | 0.33              | 0.516            |
| 1962  | 1.88 | 0.121     | 0.69   | 0.111            | 0.20              | 0.325            |
| 1963  | 1.30 | 0.097     | 0.55   | 0.091            | 0.16              | 0.259            |
| 1964  | 1.87 | 0.113     | 0.37   | 0.068            | 0.12              | 0.190            |
| 1965  | 1.56 | 0.203     | 0.42   | 0.087            | 0.15              | 0.235            |
| 1966  | 1.33 | 0.186     | 0.41   | 0.094            | 0.16              | 0.254            |
| 1967  | 0.99 | 0.131     | 0.45   | 0.107            | 0.18              | 0.291            |
| 1968  | 1.41 | 0.224     | 0.46   | 0.108            | 0.19              | 0.297            |
| 1969  | 1.12 | 0.186     | 0.35   | 0.084            | 0.15              | 0.233            |
| 1970  | 1.23 | 0.195     | 0.34   | 0.081            | 0.14              | 0.222            |
| 1971  | 0.92 | 0.127     | 0.32   | 0.071            | 0.12              | 0.193            |
| 1972  | 0.98 | 0.138     | 0.29   | 0.064            | 0.11              | 0.175            |
| 1973  | 0.84 | 0.104     | 0.30   | 0.061            | 0.10              | 0.163            |
| 1974  | 0.67 | 0.078     | 0.39   | 0.064            | 0.11              | 0.170            |
| 1975  | 0.80 | 0.110     | 0.34   | 0.083            | 0.14              | 0.222            |
| 1976  | 1.04 | 0.150     | 0.35   | 0.091            | 0.16              | 0.244            |
| 1977  | 0.65 | 0.081     | 0.36   | 0.091            | 0.16              | 0.246            |
| 1978  | 0.77 | 0.093     | 0.43   | 0.105            | 0.18              | 0.285            |
| 1979  | 0.69 | 0.067     | 0.42   | 0.087            | 0.15              | 0.238            |
| 1980  | 0.75 | 0.090     | 0.37   | 0.069            | 0.12              | 0.188            |
| 1981  | 0.79 | 0.095     | 0.37   | 0.074            | 0.13              | 0.199            |
| 1982  | 0.82 | 0.092     | 0.33   | 0.068            | 0.12              | 0.185            |
| 1983  | 0.83 | 0.082     | 0.37   | 0.074            | 0.13              | 0.198            |
| 1984  | 0.92 | 0.090     | 0.43   | 0.079            | 0.14              | 0.216            |
| 1985  | 0.80 | 0.066     | 0.45   | 0.085            | 0.15              | 0.234            |
| 1986  | 0.72 | 0.065     | 0.34   | 0.072            | 0.13              | 0.203            |
| 1987  | 0.87 | 0.092     | 0.37   | 0.070            | 0.12              | 0.198            |
| 1988  | 0.76 | 0.076     | 0.33   | 0.065            | 0.11              | 0.182            |
| 1989  | 0.66 | 0.062     | 0.33   | 0.067            | 0.12              | 0.185            |
| 1990  | 0.49 | 0.037     | 0.30   | 0.068            | 0.12              | 0.185            |
| 1991  | 0.49 | 0.029     | 0.31   | 0.074            | 0.13              | 0.200            |
| 1992  | 0.77 | 0.048     | 0.47   | 0.104            | 0.18              | 0.279            |
| 1993  | 0.81 | 0.047     | 0.53   | 0.122            | 0.21              | 0.335            |
| 1994  | 0.79 | 0.054     | 0.43   | 0.115            | 0.20              | 0.323            |
| 1995  | 0.74 | 0.055     | 0.40   | 0.124            | 0.22              | 0.344            |
| 1996  | 0.77 | 0.063     | 0.38   | 0.125            | 0.22              | 0.341            |
| 1997  | 0.67 | 0.044     | 0.40   | 0.146            | 0.25              | 0.392            |
| 1998  | 0.74 | 0.053     | 0.39   | 0.144            | 0.25              | 0.388            |
| 1999  | 0.90 | 0.067     | 0.53   | 0.138            | 0.24              | 0.370            |
| 2000  | 0.88 | 0.074     | 0.49   | 0.135            | 0.23              | 0.357            |
| 2001  | 0.54 | 0.046     | 0.33   | 0.090            | 0.15              | 0.245            |
| 2002  | 0.55 | 0.052     | 0.34   | 0.088            | 0.15              | 0.237            |
| 2003  | 0.59 | 0.055     | 0.38   | 0.099            | 0.17              | 0.264            |
| 2004  | 0.57 | 0.054     | 0.37   | 0.096            | 0.16              | 0.256            |
| 2005  | 0.58 | 0.058     | 0.38   | 0.098            | 0.17              | 0.260            |
| 2006  | 0.59 | 0.066     | 0.36   | 0.083            | 0.14              | 0.222            |
| _     |      |           |        |                  |                   |                  |

<sup>1</sup> (BILLWG 2009b).

Table 14.2 Sub-Area 2 Stock Synthesis (SS) estimated time series of annual fishing mortality (F) (the sum of quarterly fishing mortality for all fleets), and total exploitation (Catch mt)/(B\_2+ mt); Along with Bayesian surplus production (BSP) estimates of mean exploitable biomass harvest rates (BSP Mean Harvest Rate) and 95% confidence intervals (BSP MCMC 2.5%, 97.5%) $^{1}$ .

| SS SS BSP <sup>1</sup> BSP <sup>1</sup> BS                                                       |                        |
|--------------------------------------------------------------------------------------------------|------------------------|
|                                                                                                  | C 97.5%                |
|                                                                                                  |                        |
|                                                                                                  | 001                    |
| 1956 0.00 0.000 0.00 0.000 0.00                                                                  | 001                    |
|                                                                                                  | 011                    |
| 1958 0.00 0.000 0.00 0.002 0.00 0.                                                               | 010                    |
|                                                                                                  | 800                    |
|                                                                                                  | 010                    |
| 1961         0.01         0.002         0.01         0.008         0.02         0.               | 033                    |
|                                                                                                  | 044                    |
| 1963 0.03 0.006 0.02 0.022 0.04 0.                                                               | 080                    |
| 1964 0.03 0.007 0.02 0.022 0.05 0.                                                               | 085                    |
| 1965 0.01 0.004 0.01 0.013 0.03 0.                                                               | 050                    |
| 1966 0.02 0.005 0.02 0.020 0.04 0.                                                               | 075                    |
|                                                                                                  | 054                    |
|                                                                                                  | 064                    |
|                                                                                                  | 213                    |
|                                                                                                  | 128                    |
|                                                                                                  | 062                    |
|                                                                                                  | 075                    |
| 1973   0.03   0.008   0.03   0.030   0.06   0.                                                   | 115                    |
|                                                                                                  | 065                    |
|                                                                                                  | 075                    |
|                                                                                                  | 107                    |
|                                                                                                  | 123                    |
|                                                                                                  |                        |
|                                                                                                  | 134                    |
| 1979 0.03 0.008 0.03 0.029 0.06 0.                                                               | 113                    |
|                                                                                                  | 160                    |
| 1981         0.06         0.015         0.05         0.056         0.12         0.               | 221                    |
|                                                                                                  | 191                    |
| 1983 0.04 0.012 0.04 0.040 0.08 0.                                                               | 162                    |
|                                                                                                  | 127                    |
|                                                                                                  | 119                    |
|                                                                                                  | 180                    |
| 1987 0.07 0.017 0.06 0.054 0.11 0.                                                               | 203                    |
| 1988   0.07   0.018   0.06   0.062   0.13   0.                                                   | 238                    |
|                                                                                                  | 197                    |
|                                                                                                  | 337                    |
| 1991 0.10 0.025 0.08 0.077 0.16 0.                                                               | 294                    |
|                                                                                                  | 380                    |
|                                                                                                  | 302                    |
| 1994 0.08 0.022 0.08 0.070 0.15 0.                                                               | 276                    |
| 1995 0.07 0.019 0.07 0.057 0.12 0.                                                               | 220                    |
|                                                                                                  | 173                    |
|                                                                                                  | 238                    |
|                                                                                                  | 304                    |
|                                                                                                  | 164                    |
|                                                                                                  | 204                    |
|                                                                                                  | 20 <del>4</del><br>225 |
|                                                                                                  | 225<br>215             |
| 2002   0.07   0.020   0.07   0.055   0.11   0.<br>2003   0.07   0.019   0.07   0.053   0.11   0. |                        |
| 2003 0.07 0.019 0.07 0.053 0.11 0.                                                               | 206                    |
|                                                                                                  | 204                    |
|                                                                                                  | 148                    |
| 2006   0.04   0.011   0.04   0.031   0.06   0.                                                   | 119                    |

<sup>1</sup>(Brodziak 2010).

Table 15.1. Sub-Area 1 Stock Synthesis model results for individual likelihood component fits to CPUE data (Total, S1, S8, and S15), total recruitment, and total objective function, along with the total number of estimated parameters.

|                                                          |           |       |      |      |                   | Total   |              |   |
|----------------------------------------------------------|-----------|-------|------|------|-------------------|---------|--------------|---|
| Model                                                    | Total (S) | S1    | S8   | S15  | Total Recruitment | Obj Fun | # Parameters | _ |
| Sub-Area 1                                               |           |       |      |      |                   |         |              |   |
| (This Assessment)                                        | -89.5     | -76.5 | -5.7 | -7.3 | -19.7             | 1,670.0 | 119          |   |
| Sub-Area 1                                               |           |       |      |      |                   |         |              |   |
| (Preliminary Assessment) <sup>1</sup>                    | -58.1     | -48.1 | -5.6 | -4.4 | -19               | 1,689.2 | 107          |   |
| Relative Change in Likelihood Units                      |           |       |      |      |                   |         |              |   |
| (This Assessment - Preliminary Assessment <sup>1</sup> ) | -31.4     | -28.4 | -0.1 | -2.9 | -0.7              | -19.2   | 12           |   |

<sup>(</sup>Courtney and Piner 2009c).

Table 15.2. Sub-Area 2 Stock Synthesis model results for individual likelihood component fits to CPUE data (Total, S1 and S2), total recruitment, and total objective function, along with the total number of estimated parameters.

|                                                          |           |       |        |                   | Total   |              |
|----------------------------------------------------------|-----------|-------|--------|-------------------|---------|--------------|
| Model                                                    | Total (S) | S1    | S2     | Total Recruitment | Obj Fun | # Parameters |
| Sub-Area 2                                               |           |       |        |                   |         |              |
| (This Assessment)                                        | -56.7     | -46.0 | -10.7  | -11.7             | 325.2   | 69           |
| Sub-Area 2                                               |           |       |        |                   |         |              |
| (Preliminary Assessment) <sup>1</sup>                    | 125.6     | -31.6 | 157.2  | -12.7             | 505.1   | 67           |
| Relative Change in Likelihood Units                      |           |       |        |                   |         |              |
| (This Assessment - Preliminary Assessment <sup>1</sup> ) | -182.3    | -14.4 | -167.9 | 1.0               | -179.9  | 2.0          |

<sup>&</sup>lt;sup>1</sup>(Courtney and Piner 2009c).

Table 16.1. Sub-Area 1 Stock Synthesis model results for individual likelihood component fits to length data (Total, F1, F2, F3, F4, F5, F7, F12, F29, and F30).

| Model                                                    | Total   | F1    | F2    | F3   | F4    | F5   | F7  | F12 | F29   | F30   |
|----------------------------------------------------------|---------|-------|-------|------|-------|------|-----|-----|-------|-------|
| Sub-Area 1                                               |         |       |       |      |       |      |     |     |       |       |
| (This Assessment)                                        | 1,778.9 | 715.4 | 491.3 | 52.3 | 175.3 | 52.0 | 6.2 | 2.6 | 106.6 | 177.2 |
| Sub-Area 1                                               |         |       |       |      |       |      |     |     |       |       |
| (Preliminary Assessment) <sup>1</sup>                    | 1,764.2 | 725.4 | 507.2 | 6.4  | 170.8 | 52.8 | 5.6 | 1.4 | 108.2 | 186.5 |
| Relative Change in Likelihood Units                      |         |       |       |      |       |      |     |     |       |       |
| (This Assessment - Preliminary Assessment <sup>1</sup> ) | 14.7    | -10.0 | -15.9 | 45.9 | 4.5   | -0.8 | 0.6 | 1.2 | -1.6  | -9.3  |

<sup>(</sup>Courtney and Piner 2009c).

Table 16.2. Sub-Area 2 Stock Synthesis model results for individual likelihood component fits to length data (Total and F1).

| Model                                                    | Total | F1    |
|----------------------------------------------------------|-------|-------|
| Sub-Area 2                                               |       |       |
| (This Assessment)                                        | 393.6 | 393.6 |
| Sub-Area 2                                               |       |       |
| (Preliminary Assessment) <sup>1</sup>                    | 392.2 | 392.2 |
| Relative Change in Likelihood Units                      |       |       |
| (This Assessment - Preliminary Assessment <sup>1</sup> ) | 1.4   | 1.4   |
| 1/Ct                                                     |       |       |

<sup>(</sup>Courtney and Piner 2009c).

Table 17.1. Sub-Area 1 Stock Synthesis estimates of unfished female spawning biomass (S\_0), total biomass in 1951 (B\_1951) and the ratios of ending year to female spawning biomass at MSY (S\_2006/S\_MSY), unfished female spawning biomass (S\_2006/S\_0), unfished recruitment (R\_2006/R\_0), total biomass in 1951 (B\_2006/B\_1951), and age 2+ biomass in 1951 (B\_2+  $2006/B_2+ 1951$ ).

| Model                                                          | S_0 Unfished<br>(mt) | B_1951<br>(mt) | S_2006/<br>S_MSY | S_2006/<br>S_0 | R_2006/<br>R_0 | B_2006/<br>B_1951 | (B_2+ 2006)/ (B_2+<br>1951) |
|----------------------------------------------------------------|----------------------|----------------|------------------|----------------|----------------|-------------------|-----------------------------|
| Sub-Area 1<br>(This Assessment)<br>Sub-Area 1                  | 41,487               | 54,225         | 1.47             | 28%            | 85%            | 71%               | 71%                         |
| (Preliminary<br>Assessment) <sup>1</sup><br>Relative Change    | 43,230               | 54,585         | 1.47             | 30%            | 39%            | 65%               | 68%                         |
| (This Assessment -<br>Preliminary<br>Assessment <sup>1</sup> ) | -1,743               | -360           | 0.00             | -0.02          | 0.46           | 0.06              | 0.03                        |

<sup>&</sup>lt;sup>1</sup>(Courtney and Piner 2009c).

Table 17.2. Sub-Area 2 Stock Synthesis estimates of unfished female spawning biomass (S\_0), total biomass in 1955 (B\_1955) and the ratios of ending year to female spawning biomass at MSY (S\_2006/S\_MSY), unfished female spawning biomass (S\_2006/S\_0), unfished recruitment (R\_2006/R\_0), total biomass in 1955 (B\_2006/B\_1955), and age 2+ biomass in 1955 (B\_2+  $2006/B_2+ 1955$ ).

| Model                     | S_0 Unfished (mt) | B_1955<br>(mt) | S_2006/<br>S_MSY | S_2006/<br>S_0 | R_2006/<br>R_0 | B_2006/<br>B_1955 | (B_2+ 2006)/ (B_2+<br>1955) |
|---------------------------|-------------------|----------------|------------------|----------------|----------------|-------------------|-----------------------------|
| Sub-Area 2                |                   |                |                  |                |                |                   |                             |
| (This Assessment)         | 48,774            | 119,306        | 4.87             | 92%            | 88%            | 95%               | 93%                         |
| Sub-Area 2                |                   |                |                  |                |                |                   |                             |
| (Preliminary              |                   |                |                  |                |                |                   |                             |
| Assessment) <sup>1</sup>  | 17,713            | 41,893         | 2.84             | 54%            | 68%            | 57%               | 53%                         |
| Relative Change           |                   |                |                  |                |                |                   |                             |
| (This Assessment -        |                   |                |                  |                |                |                   |                             |
| Preliminary               |                   |                |                  |                |                |                   |                             |
| Assessment <sup>1</sup> ) | 31,061            | 77,413         | 2.03             | 0.38           | 0.20           | 0.38              | 0.40                        |

<sup>&</sup>lt;sup>1</sup>(Courtney and Piner 2009c).

Table 18.1. Sub-Area 1 Stock Synthesis model estimates of maximum sustainable yield (MSY), fishing mortality at MSY (F\_MSY), initial fishing mortality for fleet 1 (Init\_F\_F1), maximum F during the years 1951 – 2006, average F during the years 1951 - 2006, average F during the years 1995 – 2006 (F\_Avg (1995-2006)), and the ratio F\_Avg (1995-2006) to F\_MSY.

| Model                     | MSY<br>(mt) | F_MSY | s.e   | Init_F_F1 | s.e    | F_Max<br>1951 -<br>12006 | F_Avg<br>1951 -<br>2006 | F_Avg<br>1995 -<br>2006 | F_Avg<br>(1995-2006)<br>/<br>F_MSY |
|---------------------------|-------------|-------|-------|-----------|--------|--------------------------|-------------------------|-------------------------|------------------------------------|
| Sub-Area 1                |             |       |       |           |        |                          |                         |                         |                                    |
| (This Assessment)         | 12,449      | 0.89  | 0.047 | 1.07      | 0.052  | 2.39                     | 0.91                    | 0.68                    | 0.76                               |
| Sub-Area 1                |             |       |       |           |        |                          |                         |                         |                                    |
| (Preliminary              |             |       |       |           |        |                          |                         |                         |                                    |
| Assessment) <sup>1</sup>  | 12,325      | 0.80  | 0.036 | 1.10      | 0.064  | 2.77                     | 0.90                    | 0.64                    | 0.80                               |
| Relative Change           |             |       |       |           |        |                          |                         |                         |                                    |
| (This Assessment -        |             |       |       |           |        |                          |                         |                         |                                    |
| Preliminary               |             |       |       |           |        |                          |                         |                         |                                    |
| Assessment <sup>1</sup> ) | 124         | 0.09  | 0.011 | -0.03     | -0.012 | -0.38                    | 0.01                    | 0.04                    | -0.04                              |

<sup>1</sup>(Courtney and Piner 2009c).

Table 18.2. Sub-Area 2 Stock Synthesis model estimates of maximum sustainable yield (MSY), fishing mortality at MSY (F\_MSY), initial fishing mortality for fleet 1 (Init\_F\_F1), maximum F during the years 1955 – 2006, average F during the years 1955 - 2006, average F during the years 1995 – 2006 (F\_Avg (1995-2006)), and the ratio F\_Avg (1995-2006) to F\_MSY.

| Model                     | MSY<br>(mt) | F MSY | s.e    | Init F F1 | s.e | F_Max<br>1955 -<br>12006 | F_Avg<br>1955 -<br>2006 | F_Avg<br>1995 -<br>2006 | F_Avg (1995-2006)/<br>F MSY |
|---------------------------|-------------|-------|--------|-----------|-----|--------------------------|-------------------------|-------------------------|-----------------------------|
| Sub-Area 2                | . ,         | _     |        |           |     |                          |                         |                         | _                           |
| (This                     |             |       |        |           |     |                          |                         |                         |                             |
| Assessment)               | 13,902      | 0.58  | 0.021  | 0.00      | NA  | 0.13                     | 0.05                    | 0.07                    | 0.13                        |
| Sub-Area 2                |             |       |        |           |     |                          |                         |                         |                             |
| (Preliminary              |             |       |        |           |     |                          |                         |                         |                             |
| Assessment) <sup>1</sup>  | 5,050       | 0.66  | 0.027  | NA        | NA  | 0.42                     | 0.13                    | 0.24                    | 0.24                        |
| Relative Change           |             |       |        |           |     |                          |                         |                         |                             |
| (This                     |             |       |        |           |     |                          |                         |                         |                             |
| Assessment -              |             |       |        |           |     |                          |                         |                         |                             |
| Preliminary               |             |       |        |           |     |                          |                         |                         |                             |
| Assessment <sup>1</sup> ) | 8,852       | -0.08 | -0.006 | NA        | NA  | -0.29                    | -0.08                   | -0.17                   | -0.11                       |

(Courtney and Piner 2009c).

## **Figures**

## **Putative Boundary for Stock Scenario - 2**

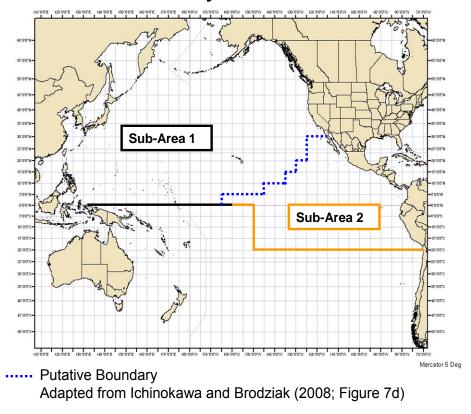



Figure 1. Stock Scenario-2, two North Pacific swordfish stocks north of the equator (BILL-WG 2008, BILL-WG 2009a, BILL-WG 2009b).

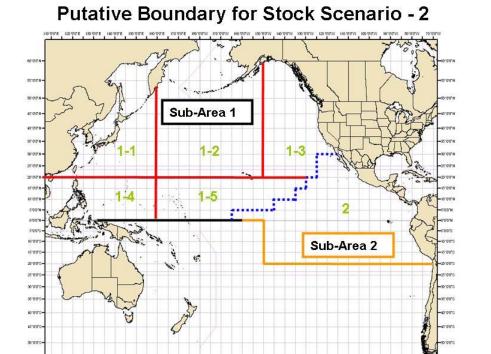



Figure 2. Regional stratification under Stock Scenario-2 (BILL-WG 2009a, BILL-WG 2009b).

Putative Boundary Adapted from Ichinokawa and Brodziak (2008; Figure 7d) Mercator 5 Deg
 Sub-area stratification adapted from ISC/09/BILLWG/1/17 Figure 2

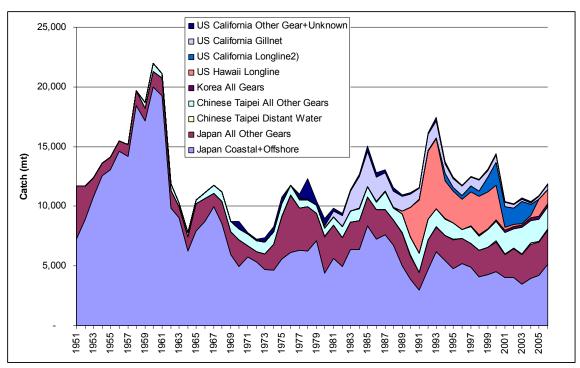



Figure 3.1. Sub-Area 1 annual catch of swordfish (mt) by fleet (Courtney and Wagatsuma 2009).

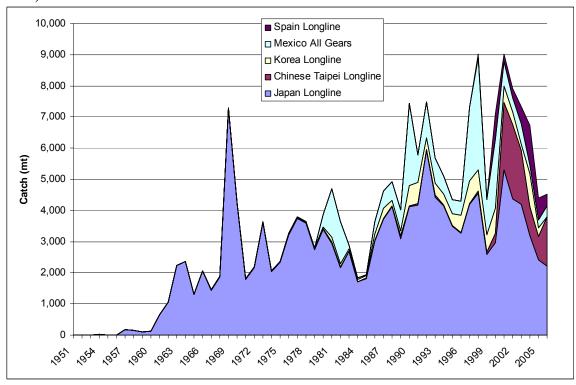



Figure 3.2. Sub-Area 2 annual catch of swordfish (mt) by fleet (BILL-WG 2009c; Appendix A).

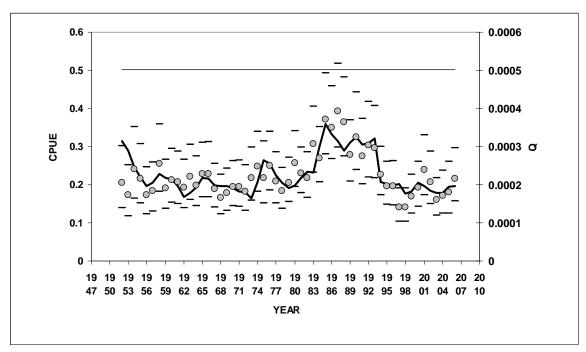



Figure 4.1. Sub-Area 1 Stock Synthesis model fit to standardized CPUE time series (S1) Japan Offshore + Distant Water Longline. Circles are observed CPUE, bold line is model estimate, dashes are +-2\*(iteratively reweighted input se), and thin line is effective q.




Figure 4.2. Sub-Area 2 Stock Synthesis model fit standardized CPUE time series (S1) Japan Offshore + Distant Water Longline. Circles are observed CPUE, bold line is model estimate, dashes are +-2\*(iteratively reweighted input se), and thin line is effective q.

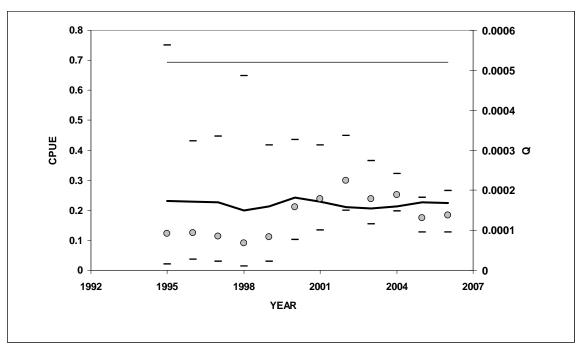



Figure 5.1. Sub-Area 1 fit to Standardized CPUE time series (S8) Chinese Taipei Distant Water Longline. Circles are observed CPUE, bold line is model estimate, dashes are +-2\*(iteratively reweighted input se), and thin line is effective q.

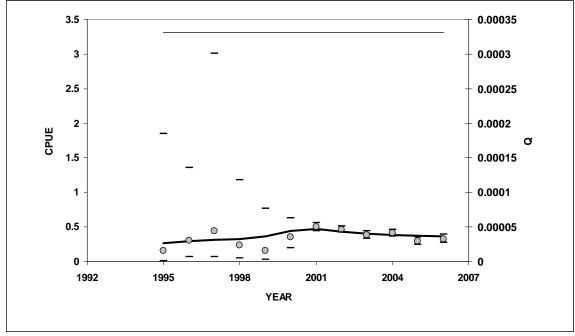



Figure 5.2. Sub-Area 2 fit to Standardized CPUE time series (S2) Chinese Taipei Distant Water Longline. Circles are observed CPUE, bold line is model estimate, dashes are +-2\*(iteratively reweighted input se), and thin line is effective q.

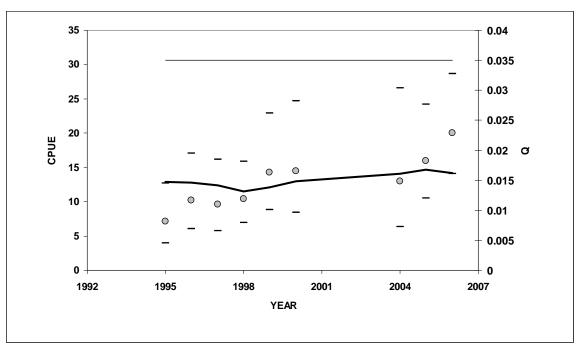



Figure 6.1. Sub-Area 1 Stock Synthesis model estimated standardized CPUE time series (S15) US Hawaii Longline Shallow-Set. Circles are observed CPUE, bold line is model estimate, dashes are +-2\*(iteratively reweighted input se), and thin line is effective q.

#### Female time-varying selectivity for F1

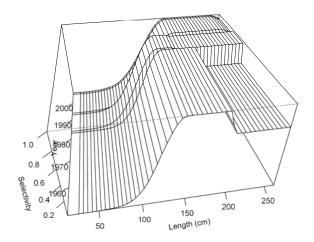



Figure 7.1. Sub-Area 1 length selectivity (F1) Japan Offshore + Distant Water Longline in Region 1-1 (Female = Male; 1951 - 1983, 1984 - 1993, 1994 - 2006).

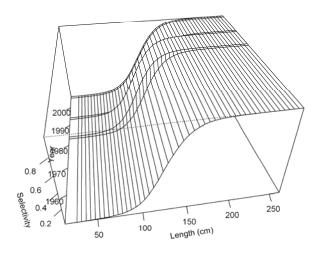



Figure 7.2. Sub-Area 1 length selectivity (F2) Japan Offshore + Distant Water Longline in Region 1-2 (Female = Male; 1951 – 1983, 1984 – 1993, 1994 – 2006).

# 

Figure 7.3. Sub-Area 1 length selectivity (F3) Japan Offshore + Distant Water Longline in Region 1-3 (Female = Male; 1951 - 2006).

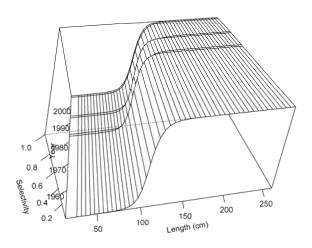



Figure 7.4. Sub-Area 1 length selectivity (F4) Japan Offshore + Distant Water Longline in Region 1-4 (Female = Male; 1951 – 1983, 1984 – 1993, 1994 – 2006).

#### Female time-varying selectivity for F5

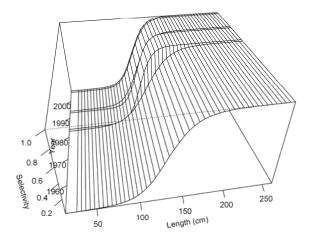



Figure 7.5. Sub-Area 1 length selectivity (F5) Japan Offshore + Distant Water Longline in Region 1-5 (Female = Male; 1951 – 1983, 1984 – 1993, 1994 – 2006).

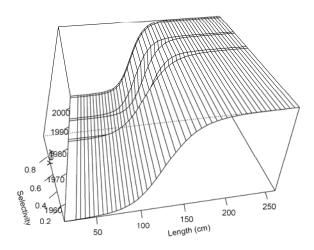



Figure 7.6. Sub-Area 2 length selectivity (F1) Japan Offshore + Distant Water Longline in Region 2-1 (Female = Male; 1951 – 1983, 1984 – 1993, 1994 – 2006).

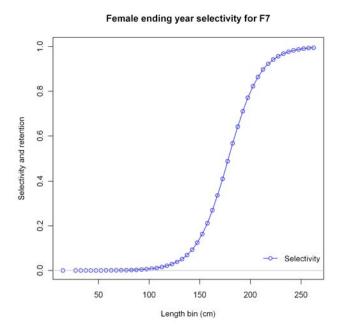



Figure 8. Sub-Area 1 length selectivity (F7) Japan Driftnet in Region 1-1 (Females = Males; 2004 – 2006).

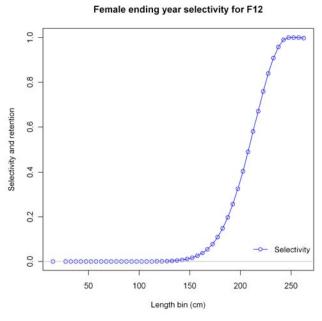



Figure 9. Sub-Area 1 length selectivity (F12) Japan Other Primarily Harpoon in Region 1-1 (Females=Males; 2006 + 2007).

#### Female time-varying selectivity for F29

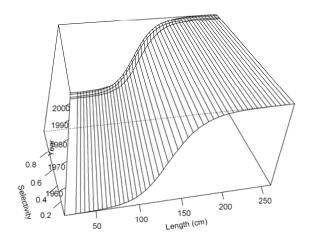



Figure 10. Sub-Area 1 length selectivity (F29) US Hawaii Longline Shallow Set (Females=Males; 1995-2003, 2004-2006).

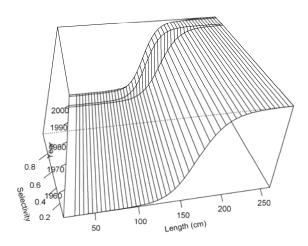



Figure 11. Sub-Area 1 length selectivity (F30) US California Gillnet (Females=Males; 1980 - 1999, 2000 - 2006).

## Pearson residuals, sexes combined, whole catch, F1 (max=8.29)

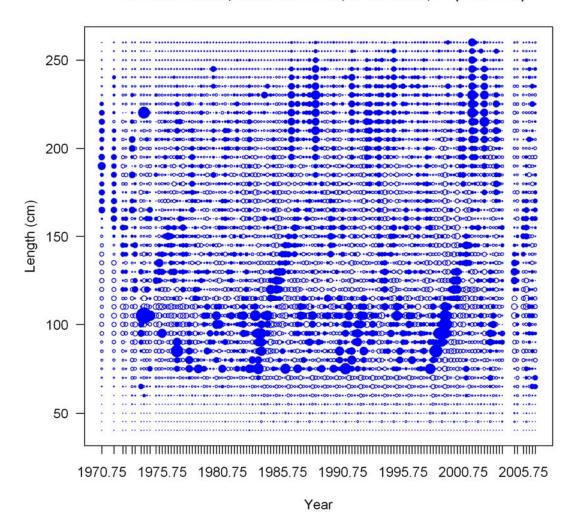



Figure 12.1 Sub-Area 1 length frequency fit for Japan Offshore + Distant Water Longline (F1) in Region 1-1. Circle width represents the Pearson residuals (observed-predicted)/sqrt(var(predicted)). Closed circles represent fewer predicted than observed. A relatively larger "max" indicates a relatively poorer fit.

## Pearson residuals, sexes combined, whole catch, F2 (max=5.72)

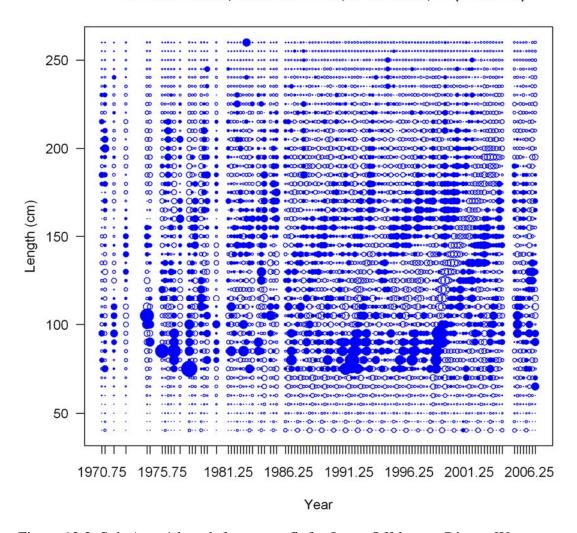



Figure 12.2. Sub-Area 1 length frequency fit for Japan Offshore + Distant Water Longline (F2) in Region 1-2. Circle width represents the Pearson residuals (observed-predicted)/sqrt(var(predicted)). Closed circles represent fewer predicted than observed. A relatively larger "max" indicates a relatively poorer fit.

## Pearson residuals, sexes combined, whole catch, F3 (max=5.67)

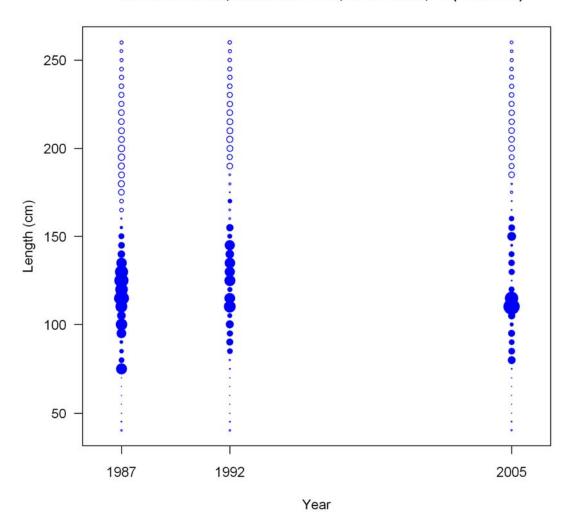



Figure 12.3. Sub-Area 1 length frequency fit for Japan Offshore + Distant Water Longline (F3) in Region 1-3. Circle width represents the Pearson residuals (observed-predicted)/sqrt(var(predicted)). Closed circles represent fewer predicted than observed. A relatively larger "max" indicates a relatively poorer fit.

#### Pearson residuals, sexes combined, whole catch, F4 (max=6.77)

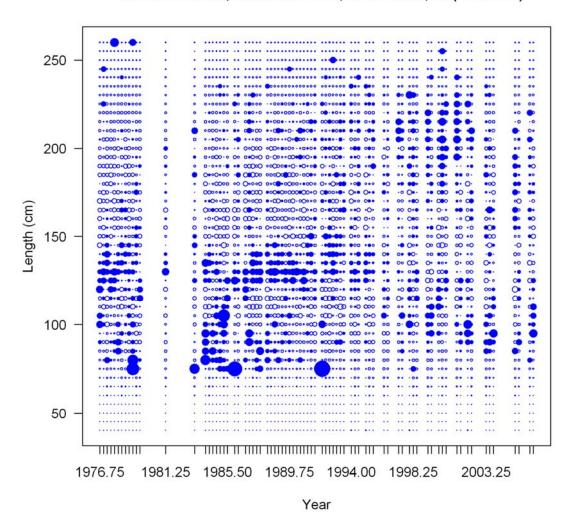



Figure 12.4. Sub-Area 1 length frequency fit for Japan Offshore + Distant Water Longline (F4) in Region 1-4. Circle width represents the Pearson residuals (observed-predicted)/sqrt(var(predicted)). Closed circles represent fewer predicted than observed. A relatively larger "max" indicates a relatively poorer fit.

#### Pearson residuals, sexes combined, whole catch, F5 (max=3.4)

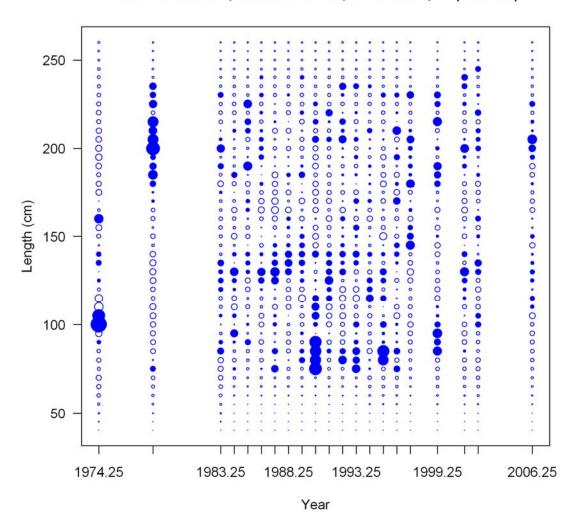



Figure 12.5. Sub-Area 1 length frequency fit for Japan Offshore + Distant Water Longline (F5) in Region 1-5. Circle width represents the Pearson residuals (observed-predicted)/sqrt(var(predicted)). Closed circles represent fewer predicted than observed. A relatively larger "max" indicates a relatively poorer fit.

#### Pearson residuals, sexes combined, whole catch, F1 (max=26.33)

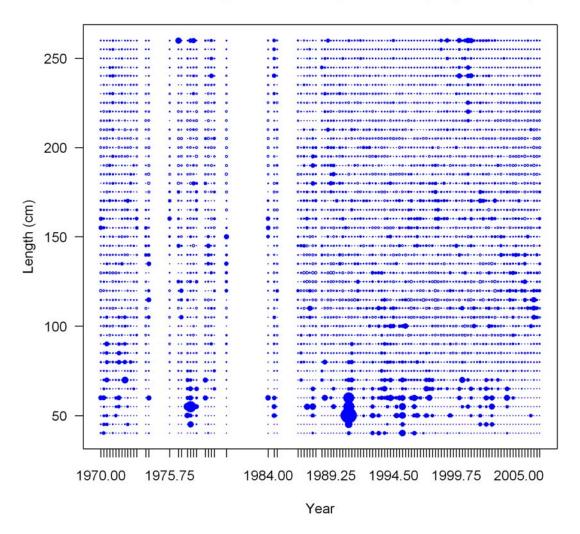



Figure 12.6. Sub-Area 2 length frequency fit for Japan Offshore + Distant Water Longline (F1) in Region 2-1. Circle width represents the Pearson residuals (observed-predicted)/sqrt(var(predicted)). Closed circles represent fewer predicted than observed. A relatively larger "max" indicates a relatively poorer fit.

#### length comps, sexes combined, whole catch, S1

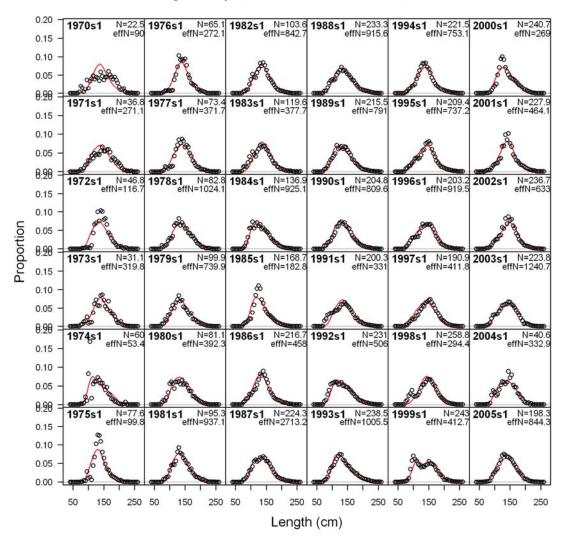



Figure 12.7.1A. Sub-Area 1 annual length frequency Japan Offshore + Distant Water Longline all regions combined (S1) and all quarters combined and assigned to quarter 1 (e.g., 1970s1). Open circles represent observed.

## Pearson residuals, sexes combined, whole catch, S1 (max=5.89)

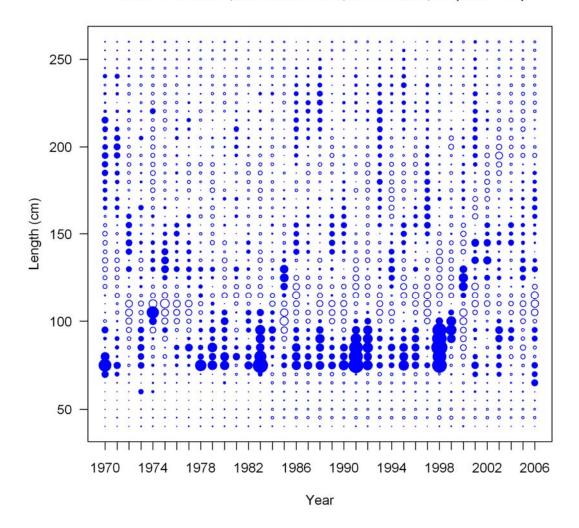



Figure 12.7.1B. Sub-Area 1 length frequency fit for Japan Offshore + Distant Water Longline all regions and quarters combined (S1). Circle width represents the Pearson residuals (observed-predicted)/sqrt(var(predicted)). Closed circles represent fewer predicted than observed. A relatively larger "max" indicates a relatively poorer fit.

#### length comps, sexes combined, whole catch, S1

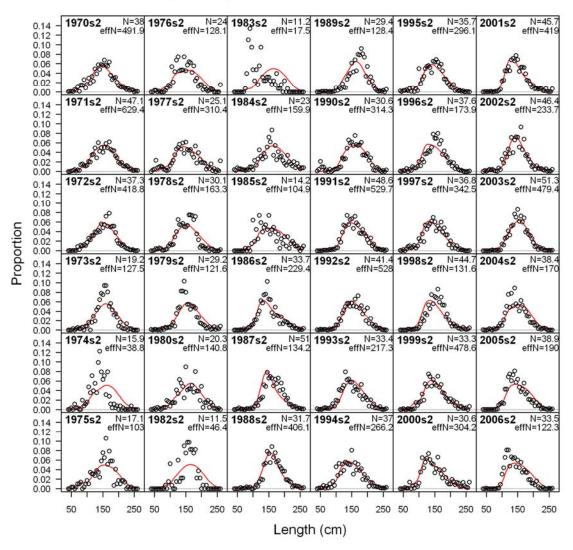



Figure 12.7.2A. Sub-Area 2 annual length frequency Japan Offshore + Distant Water Longline (S1) all quarters combined and assigned to quarter 2 (e.g, 1970s2). Open circles represent observed.

## Pearson residuals, sexes combined, whole catch, S1 (max=10.84)

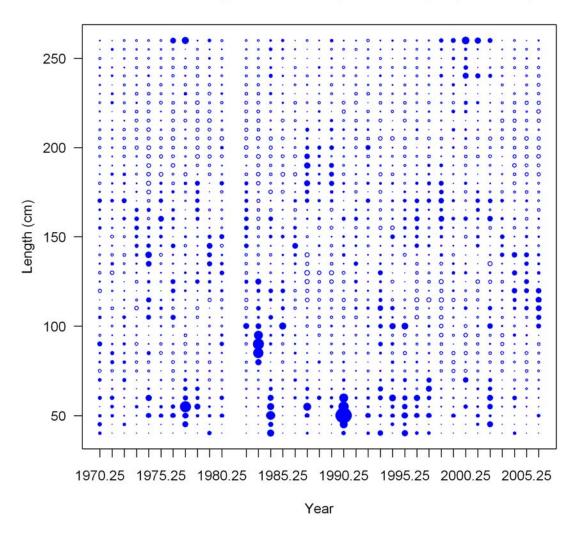



Figure 12.7.2B. Sub-Area 2 length frequency fit for Japan Offshore + Distant Water Longline all quarters combined (S1). Circle width represents the Pearson residuals (observed-predicted)/sqrt(var(predicted)). Closed circles represent fewer predicted than observed. A relatively larger "max" indicates a relatively poorer fit.

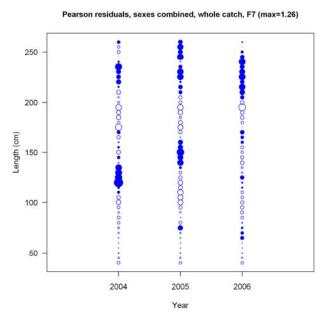



Figure 13. Sub-Area 1 length frequency fit for Japan Driftnet (F7) in Region 1-1. Circle width represents the Pearson residuals (observed-predicted)/sqrt(var(predicted)). Closed circles represent fewer predicted than observed. A relatively larger "max" indicates a relatively poorer fit.

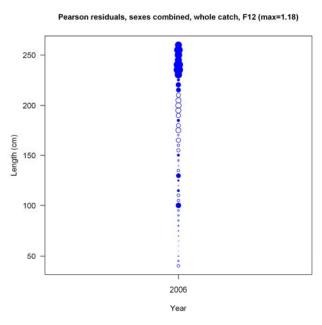



Figure 14. Sub-Area 1 length frequency fit for Japan Other Primarily Harpoon (F12) in Region 1-1. Circle width represents the Pearson residuals (observed-predicted)/sqrt(var(predicted)). Closed circles represent fewer predicted than observed. A relatively larger "max" indicates a relatively poorer fit.

## Pearson residuals, sexes combined, whole catch, F29 (max=5.55)

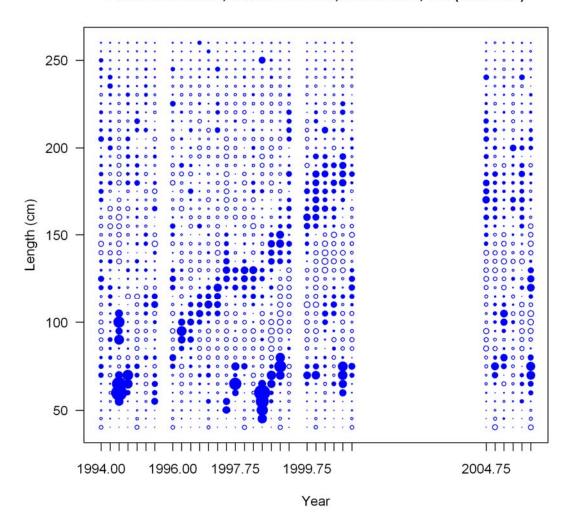



Figure 15. Sub-Area 1 length frequency fit for US Hawaii Longline Shallow Set (F29). Circle width represents the Pearson residuals (observed-predicted)/sqrt(var(predicted)). Closed circles represent fewer predicted than observed. A relatively larger "max" indicates a relatively poorer fit.

## Pearson residuals, sexes combined, whole catch, F30 (max=4.08)

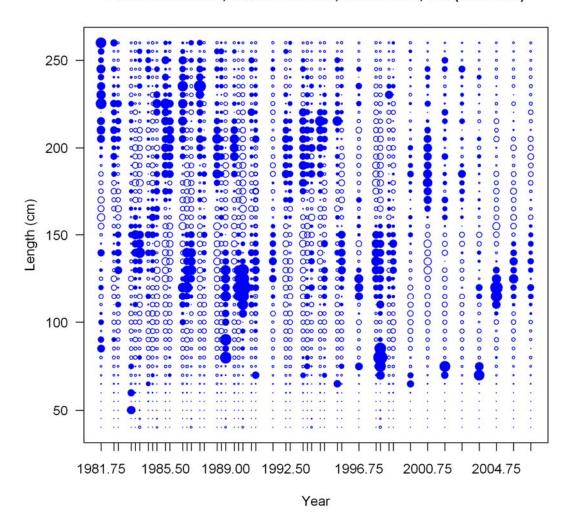



Figure 16. Sub-Area 1 length frequency fit for US California Gillnet (F30). Circle width represents the Pearson residuals (observed-predicted)/sqrt(var(predicted)). Closed circles represent fewer predicted than observed. A relatively larger "max" indicates a relatively poorer fit.

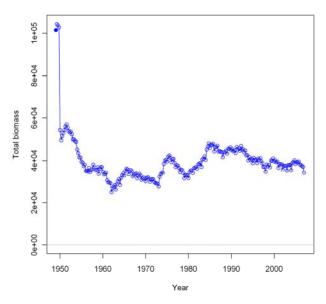



Figure 17.1. Sub-Area 1 Stock Synthesis model estimated total biomass (mt).

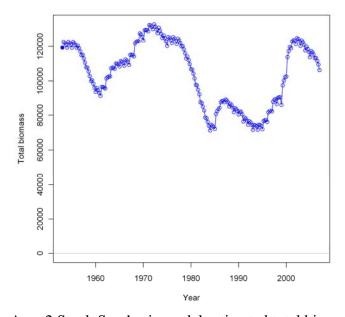



Figure 17.2. Sub-Area 2 Stock Synthesis model estimated total biomass (mt).

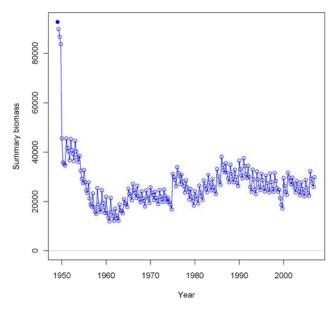



Figure 18.1. Sub-Area 1 Stock Synthesis model estimated summary biomass (Age 2+ mt).

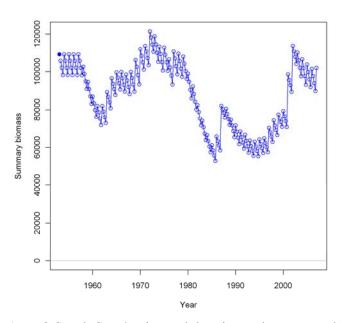



Figure 18.2. Sub-Area 2 Stock Synthesis model estimated summary biomass (Age 2+ mt).

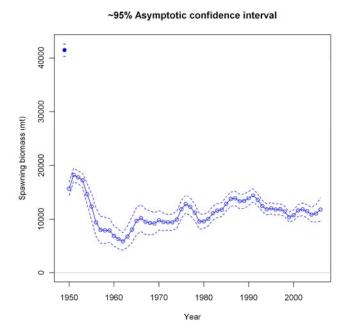



Figure 19.1. Sub-Area 1 model estimated mature female spawning biomass (mt) and 95% confidence interval calculated as +-2 \* (model estimated se of annual spawning biomass).

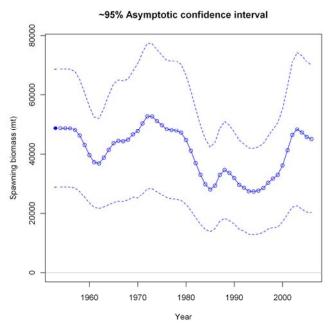



Figure 19.2 Sub-Area 2 model estimated mature female spawning biomass (mt) and 95% confidence interval calculated as +-2 \* (model estimated se of annual spawning biomass).

#### ~95% Asymptotic confidence interval

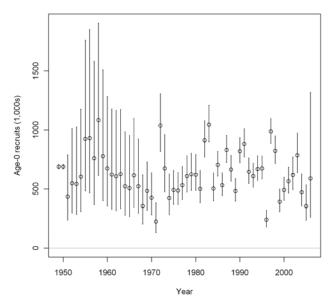



Figure 20.1. Sub-Area 1 model estimated age-0 recruitment (1,000s).



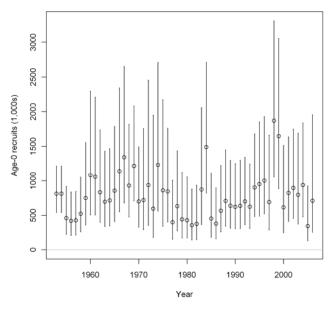



Figure 20.2. Sub-Area 2 model estimated age-0 recruitment (1,000s).

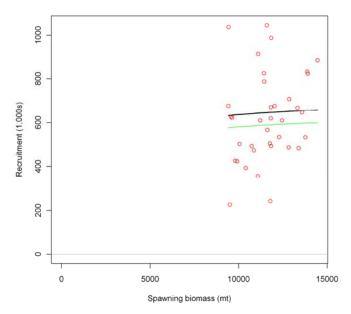



Figure 21.1. Sub-Area 1 model estimated Beverton-Holt spawner-recruit relationship for a fixed steepness (h = 0.9). Bold line is not biased adjusted.

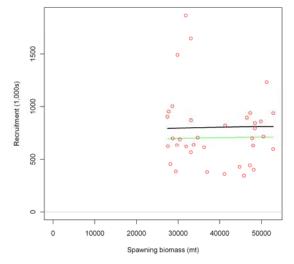



Figure 21.2. Sub-Area 2 model estimated Beverton-Holt spawner-recruit relationship for a fixed steepness (h = 0.9). Bold line is not biased adjusted.

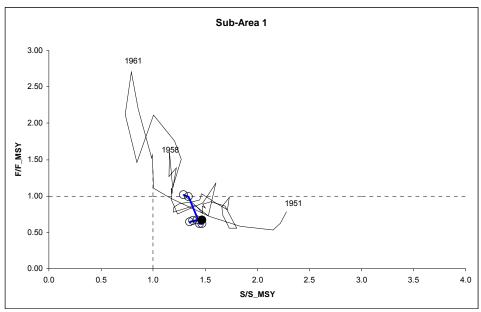



Figure 22.1 Sub-Area 1 Stock Synthesis model "Kobe" plots of female spawning biomass (S) relative to female spawning biomass at MSY (S\_MSY) and fishing mortality (F) relative to fishing mortality at MSY (F\_MSY). Bold line represents the years 1999 – 2006; Solid circle represents year 2006.

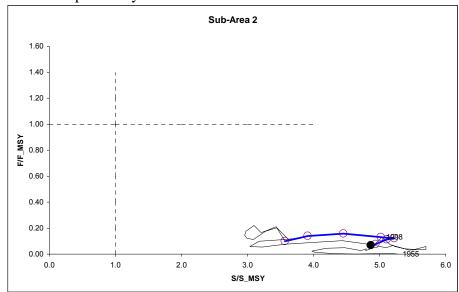



Figure 22.2 Sub-Area 2 Stock Synthesis model "Kobe" plots of female spawning biomass (S) relative to female spawning biomass at MSY (S\_MSY) and fishing mortality (F) relative to fishing mortality at MSY (F\_MSY). Bold line represents the years 1999 – 2006; Solid circle represents year 2006.

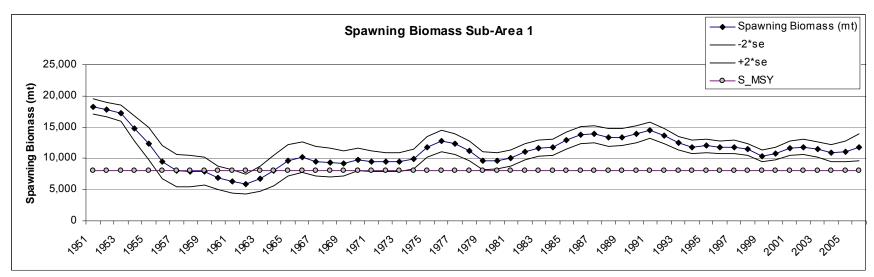



Figure 23.1. Sub-Area 1 Stock Synthesis model estimated female spawning biomass (S) along with female spawning biomass at MSY (S\_MSY).

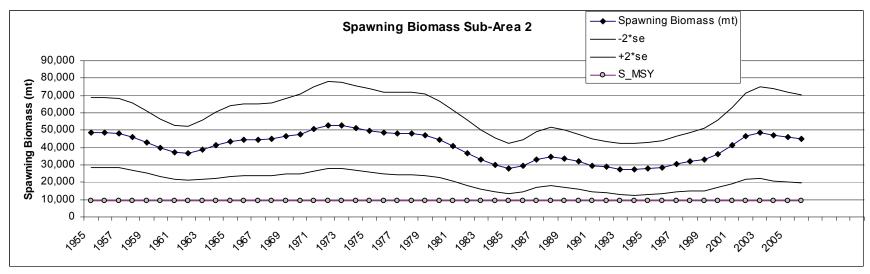



Figure 23.2. Sub-Area 2 Stock Synthesis model estimated female spawning biomass (S) along with female spawning biomass at MSY (S\_MSY).

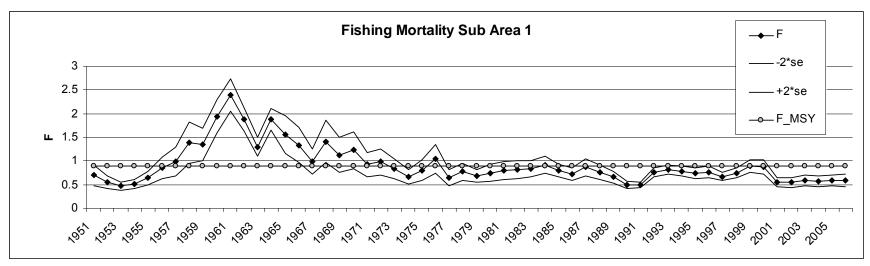



Figure 24.1. Sub-Area 1 Stock Synthesis model estimated fishing mortality (F) along with fishing mortality at MSY (F\_MSY).

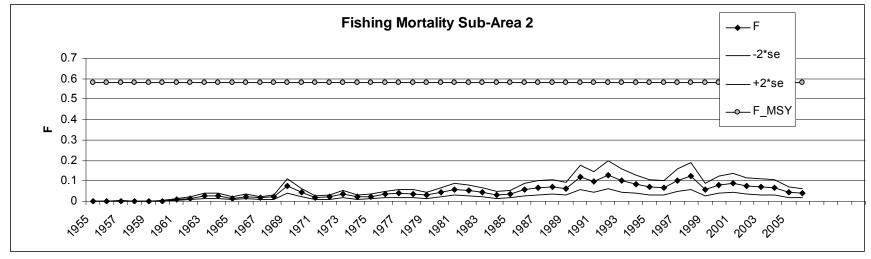



Figure 24.2. Sub-Area 2 Stock Synthesis model estimated fishing mortality (F) along with fishing mortality at MSY (F\_MSY).

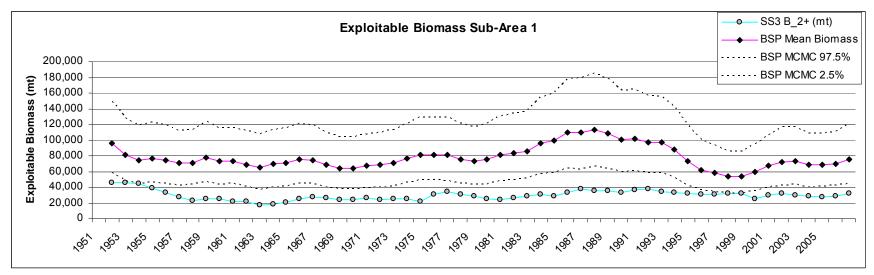



Figure 25.1. Sub-Area 1 Stock Synthesis model estimated time-series of age 2+ biomass (B\_2+) along with Bayesian surplus production (BSP) estimates of mean exploitable biomass (BSP Mean Biomass) and 95% confidence intervals (BSP MCMC 2.5%, 97.5%) reproduced from (Brodziak and Ishimura 2009, BILL-WG 2009b).

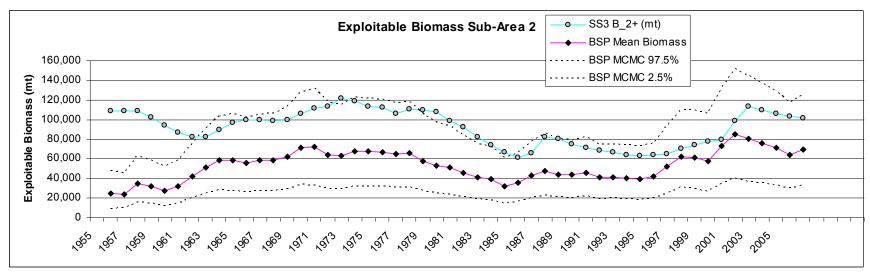



Figure 25.2. Sub-Area 2 Stock Synthesis model estimated time-series of age 2+ biomass (B\_2+) along with Bayesian surplus production (BSP) estimates of mean exploitable biomass (BSP Mean Biomass) and 95% confidence intervals (BSP MCMC 2.5%, 97.5%) reproduced from (Brodziak and Ishimura 2009, BILL-WG 2009b)

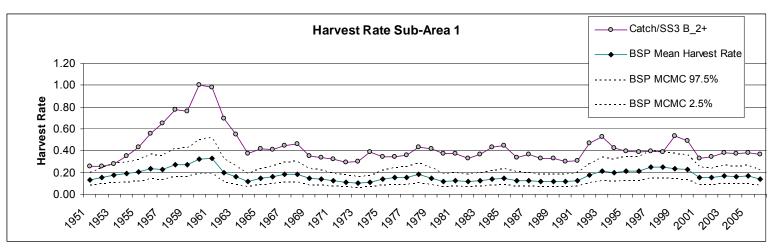



Figure 26.1. Sub-Area 1 Stock Synthesis model estimated time series of total exploitation (Catch mt)/(B\_2+ mt) along with Bayesian surplus production (BSP) estimates of mean exploitable biomass harvest rates (BSP Mean Harvest Rate) and 95% confidence intervals (BSP MCMC 2.5%, 97.5%) reproduced from (Brodziak and Ishimura 2009, BILL-WG 2009b).

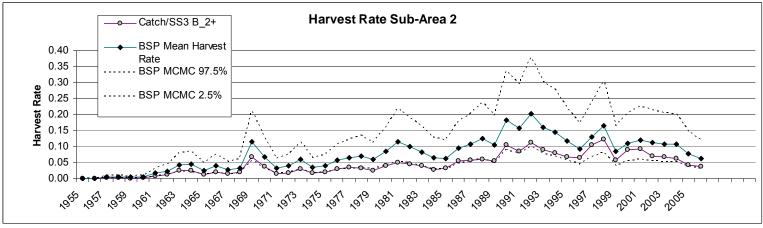



Figure 26.2. Sub-Area 2 Stock Synthesis model estimated time series of total exploitation (Catch mt)/(B\_2+ mt) along with Bayesian surplus production (BSP) estimates of mean exploitable biomass harvest rates (BSP Mean Harvest Rate) and 95% confidence intervals (BSP MCMC 2.5%, 97.5%) reproduced from (Brodziak and Ishimura 2009, BILL-WG 2009)

# Appendix A. Updated Catch Statistics in Sub-Area 2 (Adapted from Bill-WG 2009c)

Table A.1. Annual total catch (mt) of swordfish in Sub-Area 2 (with updated catch).

Japan<sup>1)</sup> Chinese Taipei<sup>2)</sup> Korea<sup>2)</sup> Spain<sup>2)</sup> Mexico Grand

| Year | Japan <sup>1)</sup><br>Longline | Chinese Taipei <sup>2)</sup> Longline | Korea <sup>2)</sup><br>Longline | Spain <sup>2)</sup><br>Longline | Mexico<br>All Gears | Grand<br>Total |
|------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------|---------------------|----------------|
| 1951 | 1                               | Longinic                              | -                               | Longine                         | -                   | 1              |
| 1952 | 1                               | -                                     | -                               | -                               | -                   | 1              |
| 1953 | 2                               |                                       | _                               | _                               | _                   | 2              |
| 1954 | 15                              | _                                     | _                               | _                               | _                   | 15             |
| 1955 | 12                              | -                                     | -                               | -                               | -                   | 12             |
|      | 11                              | -                                     | -                               | -                               | -                   |                |
| 1956 |                                 | -                                     | -                               | -                               | -                   | 11             |
| 1957 | 168                             | -                                     | -                               | -                               | -                   | 168            |
| 1958 | 138                             | -                                     | -                               | -                               | -                   | 138            |
| 1959 | 98                              | -                                     | -                               | -                               | -                   | 98             |
| 1960 | 138                             | -                                     | -                               | -                               | -                   | 138            |
| 1961 | 645                             | -                                     | -                               | -                               | -                   | 645            |
| 1962 | 1,066                           | -                                     | -                               | -                               | -                   | 1,066          |
| 1963 | 2,228                           | -                                     | -                               | -                               | -                   | 2,228          |
| 1964 | 2,372                           | -                                     | -                               | -                               | -                   | 2,372          |
| 1965 | 1,304                           | -                                     | -                               | -                               | -                   | 1,304          |
| 1966 | 2,059                           | -                                     | -                               | -                               | -                   | 2,059          |
| 1967 | 1,440                           | 21                                    | -                               | -                               | -                   | 1,461          |
| 1968 | 1,858                           | 15                                    | -                               | -                               | -                   | 1,873          |
| 1969 | 7,281                           | 5                                     | -                               | -                               | -                   | 7,286          |
| 1970 | 4,219                           | 25                                    | _                               | _                               | _                   | 4,243          |
| 1971 | 1,790                           | 14                                    | _                               | -                               | _                   | 1,804          |
| 1972 | 2,172                           | 22                                    | _                               | _                               | 2                   | 2,196          |
| 1973 | 3,612                           | 18                                    | _                               | _                               | 4                   | 3,634          |
| 1974 | 2,025                           | 23                                    | _                               | _                               | 6                   | 2,054          |
| 1975 | 2,330                           | 19                                    | 9                               | _                               | -                   | 2,359          |
| 1976 | 3,215                           | 34                                    | 29                              | _                               | _                   | 3,278          |
| 1977 | 3,745                           | 28                                    | 33                              | _                               | _                   | 3,806          |
| 1978 | 3,601                           | 6                                     | 35                              | -                               | -                   | 3,642          |
| 1979 | 2,746                           | 25                                    | 18                              | -                               | 7                   | 2,796          |
| 1980 | 3,399                           | 18                                    | 62                              | -                               | 380                 | 3,859          |
|      |                                 | 27                                    |                                 | -                               |                     |                |
| 1981 | 2,952                           |                                       | 153                             | -                               | 1,575               | 4,707          |
| 1982 | 2,159                           | 19<br>7                               | 97                              | -                               | 1,365               | 3,640          |
| 1983 | 2,693                           |                                       | 65                              | -                               | 120                 | 2,885          |
| 1984 | 1,701                           | 13                                    | 65                              | -                               | 47                  | 1,825          |
| 1985 | 1,816                           | 10                                    | 91                              | -                               | 18                  | 1,936          |
| 1986 | 3,020                           | 12                                    | 198                             | -                               | 422                 | 3,652          |
| 1987 | 3,718                           | 22                                    | 334                             | -                               | 550                 | 4,625          |
| 1988 | 4,122                           | 29                                    | 163                             | -                               | 613                 | 4,927          |
| 1989 | 3,080                           | 107                                   | 151                             | -                               | 690                 | 4,028          |
| 1990 | 4,123                           | 31                                    | 645                             | -                               | 2,650               | 7,449          |
| 1991 | 4,171                           | 44                                    | 696                             | -                               | 861                 | 5,772          |
| 1992 | 5,942                           | 19                                    | 372                             | -                               | 1,160               | 7,493          |
| 1993 | 4,430                           | 64                                    | 385                             | -                               | 812                 | 5,690          |
| 1994 | 4,158                           | 23                                    | 344                             | -                               | 581                 | 5,106          |
| 1995 | 3,494                           | 14                                    | 399                             | -                               | 437                 | 4,343          |
| 1996 | 3,254                           | 26                                    | 568                             | -                               | 439                 | 4,287          |
| 1997 | 4,202                           | 29                                    | 707                             | 6                               | 2,365               | 7,310          |
| 1998 | 4,541                           | 74                                    | 675                             | 115                             | 3,603               | 9,008          |
| 1999 | 2,588                           | 63                                    | 561                             | 29                              | 1,136               | 4,377          |
| 2000 | 2,964                           | 291                                   | 817                             | 831                             | 2,216               | 7,119          |
| 2001 | 5,313                           | 2,152                                 | 517                             | 245                             | 780                 | 9,008          |
| 2002 | 4,370                           | 2,396                                 | 391                             | 303                             | 465                 | 7,925          |
| 2003 | 4,192                           | 1,747                                 | 182                             | 534                             | 671                 | 7,327          |
| 2004 | 3,182                           | 942                                   | 1,060                           | 1,292                           | 270                 | 6,746          |
| 2005 | 2,421                           | 746                                   | 287                             | 717                             | 235                 | 4,405          |
| 2006 | 2,204                           | 1,006                                 | 207                             | 366                             | 347                 | 3,924          |
|      |                                 | of swordfish caught by                | Japanese Off                    |                                 |                     |                |

<sup>1)</sup> Annual total catch (mt) of swordfish caught by Japanese Offshore + Distant-Water Longline updated to include the area 0 - 20 S and

east of 150 W. Japan catch in 2005 and 2006 is provisional.

2) Annual total catch (mt) of swordfish in Sub-area 2 for longline vessels of Spain (ESP), Korea (KOR), and Chinese Taipei (TWN) estimated from data held by the IATTC.

Table A.2. For comparison, initial estimates of annual total catch (mt) of swordfish in Sub-Area 2 are provided without updated catch (Adapted from Courtney and Wagatsuma 2009).

\*\*Table A.2. For comparison, initial estimates of annual total catch (mt) of swordfish in Sub-Area 2 are provided without updated catch (Adapted from Courtney and Wagatsuma 2009).

| Vear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Japan    | Chinese Taipei | Korea    | Mexico    | Grand |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|----------------|----------|-----------|-------|
| 1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Year               | Longline | Longline       | Longline | All Gears | Total |
| 1953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | _        | -              | -        | -         |       |
| 1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |          | -              | -        | -         |       |
| 1955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |          | -              | -        | -         |       |
| 1956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | _        | -              | -        | -         |       |
| 1957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |          | -              | -        | -         |       |
| 1958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |          | -              | -        | -         |       |
| 1959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |          | -              | -        | -         |       |
| 1960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |          | -              | -        | -         |       |
| 1961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |          | -              | -        | -         |       |
| 1962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |          | -              | -        | -         |       |
| 1963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |          | _              | _        | -         |       |
| 1964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |          | -              | -        | -         |       |
| 1965   807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | _              | _        |           |       |
| 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |          |                | _        |           |       |
| 1967         943         -         -         943           1968         1,246         -         -         -         1,246           1969         3,487         -         -         -         3,487           1970         2,368         -         -         -         2,368           1971         1,257         -         0         -         1,257           1972         1,470         -         0         2         1,472           1973         2,420         -         0         4         2,424           1974         1,353         -         0         6         1,359           1975         1,491         -         0         -         1,491           1976         1,900         -         0         -         1,900           1977         2,069         -         110         -         2,178           1978         1,781         -         34         -         1,815           1979         1,4459         -         -         7         1,466           1980         1,592         -         32         380         2,004           1981         1                                                                                                    |                    |          |                | _        |           |       |
| 1968         1,246         -         -         1,246           1969         3,487         -         -         3,487           1970         2,368         -         -         -         2,368           1971         1,257         -         0         -         1,257           1972         1,470         -         0         2         1,472           1973         2,420         -         0         4         2,424           1974         1,353         -         0         6         1,359           1975         1,491         -         0         -         1,491           1976         1,900         -         0         -         1,491           1976         1,900         -         0         -         1,490           1977         2,069         -         110         -         2,178           1978         1,781         -         34         -         1,815           1979         1,459         -         -         7         1,466           1980         1,592         -         32         380         2,004           1981         1,4110                                                                                                      |                    |          | _              | _        |           |       |
| 1969         3,487         -         -         3,487           1970         2,368         -         -         -         2,368           1971         1,257         -         0         -         1,257           1972         1,470         -         0         2         1,472           1973         2,420         -         0         4         2,424           1974         1,353         -         0         6         1,359           1975         1,491         -         0         -         1,491           1976         1,900         -         0         -         1,900           1977         2,069         -         110         -         2,178           1978         1,781         -         34         -         1,815           1979         1,459         -         -         7         1,466           1980         1,592         -         32         380         2,004           1981         1,410         -         -         1,575         2,985           1982         1,097         -         24         1,365         2,486           1983                                                                                                  |                    |          | _              | _        |           |       |
| 1970         2,368         -         -         2,368           1971         1,257         -         0         -         1,257           1972         1,470         -         0         2         1,472           1973         2,420         -         0         4         2,424           1974         1,353         -         0         6         1,359           1975         1,491         -         0         -         1,491           1976         1,900         -         0         -         1,900           1977         2,069         -         110         -         2,178           1978         1,781         -         34         -         1,815           1979         1,459         -         -         7         1,466           1980         1,592         -         32         380         2,004           1981         1,410         -         -         1,575         2,985           1982         1,097         -         24         1,365         2,486           1983         1,294         -         6         120         1,419           1984                                                                                                |                    | ,        |                | _        |           |       |
| 1971         1,257         -         0         -         1,257           1973         2,420         -         0         4         2,424           1974         1,353         -         0         6         1,359           1975         1,491         -         0         -         1,491           1976         1,900         -         0         -         1,900           1977         2,069         -         110         -         2,178           1978         1,781         -         34         -         1,815           1979         1,459         -         -         7         1,466           1980         1,592         -         32         380         2,004           1981         1,410         -         -         1,575         2,985           1982         1,097         -         24         1,365         2,486           1983         1,294         -         6         120         1,419           1984         826         -         24         47         897           1985         958         -         12         18         988                                                                                                         |                    |          |                | _        |           |       |
| 1972         1,470         -         0         2         1,472           1973         2,420         -         0         4         2,424           1974         1,353         -         0         6         1,359           1975         1,491         -         0         -         1,491           1976         1,900         -         0         -         1,900           1977         2,069         -         110         -         2,178           1978         1,781         -         34         -         1,815           1979         1,459         -         -         7         1,466           1980         1,592         -         32         380         2,004           1981         1,410         -         -         1,575         2,985           1982         1,097         -         24         1,365         2,486           1983         1,294         -         6         120         1,419           1984         826         -         24         47         897           1985         958         -         12         18         988                                                                                                         |                    |          |                |          |           |       |
| 1973         2,420         -         0         4         2,424           1974         1,353         -         0         6         1,359           1975         1,491         -         0         -         1,491           1976         1,900         -         0         -         1,900           1977         2,069         -         110         -         2,178           1978         1,781         -         34         -         1,815           1979         1,459         -         -         7         1,466           1980         1,592         -         32         380         2,004           1981         1,410         -         -         1,575         2,985           1982         1,097         -         24         1,365         2,486           1983         1,294         -         6         120         1,419           1984         826         -         24         47         897           1985         958         -         12         18         988           1986         1,508         -         5         422         1,934                                                                                                       |                    |          | _              |          |           |       |
| 1974         1,353         -         0         6         1,359           1975         1,491         -         0         -         1,491           1976         1,900         -         0         -         1,900           1977         2,069         -         110         -         2,178           1978         1,781         -         34         -         1,815           1979         1,459         -         -         7         1,466           1980         1,592         -         32         380         2,004           1981         1,410         -         -         1,575         2,985           1982         1,097         -         24         1,365         2,486           1983         1,294         -         6         120         1,419           1984         826         -         24         47         897           1985         958         -         12         18         988           1986         1,508         -         5         422         1,934           1987         1,687         -         22         550         2,429                                                                                                    |                    |          | _              |          |           |       |
| 1975         1,491         -         0         -         1,491           1976         1,900         -         0         -         1,900           1977         2,069         -         110         -         2,178           1978         1,781         -         34         -         1,815           1979         1,459         -         -         7         1,466           1980         1,592         -         32         380         2,004           1981         1,410         -         -         1,575         2,985           1982         1,097         -         24         1,365         2,486           1983         1,294         -         6         120         1,419           1984         826         -         24         47         897           1985         958         -         12         18         988           1986         1,508         -         5         422         1,934           1987         1,857         -         22         550         2,429           1988         1,857         -         14         613         2,484 <tr< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td></tr<>                        |                    |          | _              |          |           |       |
| 1976         1,900         -         0         -         1,900           1977         2,069         -         110         -         2,178           1978         1,781         -         34         -         1,815           1979         1,459         -         -         7         1,466           1980         1,592         -         32         380         2,004           1981         1,410         -         -         1,575         2,985           1982         1,097         -         24         1,365         2,486           1983         1,294         -         6         120         1,419           1984         826         -         24         47         897           1985         958         -         12         18         988           1985         958         -         12         18         988           1986         1,508         -         5         422         1,934           1987         1,857         -         22         2550         2,429           1988         1,687         -         20         690         2,397                                                                                                  |                    |          | _              |          |           |       |
| 1977         2,069         -         110         -         2,178           1978         1,781         -         34         -         1,815           1979         1,459         -         -         7         1,466           1980         1,592         -         32         380         2,004           1981         1,410         -         -         1,575         2,985           1982         1,097         -         24         1,365         2,486           1983         1,294         -         6         120         1,419           1984         826         -         24         47         897           1985         958         -         12         18         988           1986         1,508         -         5         422         1,934           1987         1,857         -         22         550         2,429           1988         1,857         -         14         613         2,484           1989         1,687         -         20         690         2,397           1990         1,931         -         31         2,650         4,611                                                                                         |                    |          |                |          | _         |       |
| 1978         1,781         -         34         -         1,815           1979         1,459         -         -         7         1,466           1980         1,592         -         32         380         2,004           1981         1,410         -         -         1,575         2,985           1982         1,097         -         24         1,365         2,486           1983         1,294         -         6         120         1,419           1984         826         -         24         47         897           1985         958         -         12         18         988           1986         1,508         -         5         422         1,934           1987         1,857         -         22         550         2,429           1988         1,857         -         14         613         2,484           1989         1,687         -         20         690         2,397           1990         1,931         -         31         2,650         4,611           1991         1,868         -         3         861         2,731                                                                                         |                    |          |                |          |           |       |
| 1979         1,459         -         -         7         1,466           1980         1,592         -         32         380         2,004           1981         1,410         -         -         1,575         2,985           1982         1,097         -         24         1,365         2,486           1983         1,294         -         6         120         1,419           1984         826         -         24         47         897           1985         958         -         12         18         988           1986         1,508         -         5         422         1,934           1987         1,857         -         22         550         2,429           1988         1,857         -         14         613         2,484           1989         1,687         -         20         690         2,397           1990         1,931         -         31         2,650         4,611           1991         1,868         -         3         861         2,731           1992         2,530         -         4         1,160         3,694 </td <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>                    |                    |          | _              |          |           |       |
| 1980         1,592         -         32         380         2,004           1981         1,410         -         -         1,575         2,985           1982         1,097         -         24         1,365         2,486           1983         1,294         -         6         120         1,419           1984         826         -         24         47         897           1985         958         -         12         18         988           1986         1,508         -         5         422         1,934           1987         1,857         -         22         550         2,429           1988         1,857         -         22         550         2,429           1988         1,857         -         20         690         2,397           1990         1,931         -         31         2,650         4,611           1991         1,868         -         3         861         2,731           1992         2,530         -         4         1,160         3,694           1993         2,110         -         8         812         2,929                                                                                    |                    |          | _              |          |           |       |
| 1981         1,410         -         -         1,575         2,985           1982         1,097         -         24         1,365         2,486           1983         1,294         -         6         120         1,419           1984         826         -         24         47         897           1985         958         -         12         18         988           1986         1,508         -         5         422         1,934           1987         1,857         -         22         550         2,429           1988         1,857         -         14         613         2,484           1989         1,687         -         20         690         2,397           1990         1,931         -         31         2,650         4,611           1991         1,868         -         3         861         2,731           1992         2,530         -         4         1,160         3,694           1993         2,110         -         8         812         2,929           1994         1,939         -         33         581         2,553                                                                                    |                    |          | _              |          |           |       |
| 1982         1,097         -         24         1,365         2,486           1983         1,294         -         6         120         1,419           1984         826         -         24         47         897           1985         958         -         12         18         988           1986         1,508         -         5         422         1,934           1987         1,857         -         22         550         2,429           1988         1,857         -         14         613         2,484           1989         1,687         -         20         690         2,397           1990         1,931         -         31         2,650         4,611           1991         1,868         -         3         861         2,731           1992         2,530         -         4         1,160         3,694           1993         2,110         -         8         812         2,929           1994         1,939         -         33         581         2,553           1995         1,670         1         5         437         2,114 </td <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td></td>                   |                    |          | _              | -        |           |       |
| 1983         1,294         -         6         120         1,419           1984         826         -         24         47         897           1985         958         -         12         18         988           1986         1,508         -         5         422         1,934           1987         1,857         -         22         550         2,429           1988         1,857         -         14         613         2,484           1989         1,687         -         20         690         2,397           1990         1,931         -         31         2,650         4,611           1991         1,868         -         3         861         2,731           1992         2,530         -         4         1,160         3,694           1993         2,110         -         8         812         2,929           1994         1,939         -         33         581         2,553           1995         1,670         1         5         437         2,114           1996         1,735         4         8         439         2,186                                                                                         |                    |          | _              | 24       |           |       |
| 1984         826         -         24         47         897           1985         958         -         12         18         988           1986         1,508         -         5         422         1,934           1987         1,857         -         22         550         2,429           1988         1,857         -         14         613         2,484           1989         1,687         -         20         690         2,397           1990         1,931         -         31         2,650         4,611           1991         1,868         -         3         861         2,731           1992         2,530         -         4         1,160         3,694           1993         2,110         -         8         812         2,929           1994         1,939         -         33         581         2,553           1995         1,670         1         5         437         2,114           1996         1,735         4         8         439         2,186           1997         2,143         3         50         2,365         4,561 </td <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>                    |                    |          | _              |          |           |       |
| 1985         958         -         12         18         988           1986         1,508         -         5         422         1,934           1987         1,857         -         22         550         2,429           1988         1,857         -         14         613         2,484           1989         1,687         -         20         690         2,397           1990         1,931         -         31         2,650         4,611           1991         1,868         -         3         861         2,731           1992         2,530         -         4         1,160         3,694           1993         2,110         -         8         812         2,929           1994         1,939         -         33         581         2,553           1995         1,670         1         5         437         2,114           1996         1,735         4         8         439         2,186           1997         2,143         3         50         2,365         4,561           1998         2,153         15         77         3,603         5,847 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                  |                    |          |                |          |           |       |
| 1986         1,508         -         5         422         1,934           1987         1,857         -         22         550         2,429           1988         1,857         -         14         613         2,484           1989         1,687         -         20         690         2,397           1990         1,931         -         31         2,650         4,611           1991         1,868         -         3         861         2,731           1992         2,530         -         4         1,160         3,694           1993         2,110         -         8         812         2,929           1994         1,939         -         33         581         2,553           1995         1,670         1         5         437         2,114           1996         1,735         4         8         439         2,186           1997         2,143         3         50         2,365         4,561           1998         2,153         15         77         3,603         5,847           1999         1,260         34         66         1,136         2                                                                          |                    |          | _              |          |           |       |
| 1987         1,857         -         22         550         2,429           1988         1,857         -         14         613         2,484           1989         1,687         -         20         690         2,397           1990         1,931         -         31         2,650         4,611           1991         1,868         -         3         861         2,731           1992         2,530         -         4         1,160         3,694           1993         2,110         -         8         812         2,929           1994         1,939         -         33         581         2,553           1995         1,670         1         5         437         2,114           1996         1,735         4         8         439         2,186           1997         2,143         3         50         2,365         4,561           1998         2,153         15         77         3,603         5,847           1999         1,260         34         66         1,136         2,495           2000         1,671         213         101         2,216                                                                              |                    |          | _              |          |           |       |
| 1988         1,857         -         14         613         2,484           1989         1,687         -         20         690         2,397           1990         1,931         -         31         2,650         4,611           1991         1,868         -         3         861         2,731           1992         2,530         -         4         1,160         3,694           1993         2,110         -         8         812         2,929           1994         1,939         -         33         581         2,553           1995         1,670         1         5         437         2,114           1996         1,735         4         8         439         2,186           1997         2,143         3         50         2,365         4,561           1998         2,153         15         77         3,603         5,847           1999         1,260         34         66         1,136         2,495           2000         1,671         213         101         2,216         4,201           2001         2,900         978         219         780                                                                           |                    |          | _              |          |           |       |
| 1989         1,687         -         20         690         2,397           1990         1,931         -         31         2,650         4,611           1991         1,868         -         3         861         2,731           1992         2,530         -         4         1,160         3,694           1993         2,110         -         8         812         2,929           1994         1,939         -         33         581         2,553           1995         1,670         1         5         437         2,114           1996         1,735         4         8         439         2,186           1997         2,143         3         50         2,365         4,561           1998         2,153         15         77         3,603         5,847           1999         1,260         34         66         1,136         2,495           2000         1,671         213         101         2,216         4,201           2001         2,900         978         219         780         4,877           2002         2,193         1,545         220         465                                                                      |                    |          | _              |          |           |       |
| 1990         1,931         -         31         2,650         4,611           1991         1,868         -         3         861         2,731           1992         2,530         -         4         1,160         3,694           1993         2,110         -         8         812         2,929           1994         1,939         -         33         581         2,553           1995         1,670         1         5         437         2,114           1996         1,735         4         8         439         2,186           1997         2,143         3         50         2,365         4,561           1998         2,153         15         77         3,603         5,847           1999         1,260         34         66         1,136         2,495           2000         1,671         213         101         2,216         4,201           2001         2,900         978         219         780         4,877           2002         2,193         1,545         220         465         4,423           2003         1,897         984         191         671 </td <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> |                    |          | _              |          |           |       |
| 1991         1,868         -         3         861         2,731           1992         2,530         -         4         1,160         3,694           1993         2,110         -         8         812         2,929           1994         1,939         -         33         581         2,553           1995         1,670         1         5         437         2,114           1996         1,735         4         8         439         2,186           1997         2,143         3         50         2,365         4,561           1998         2,153         15         77         3,603         5,847           1999         1,260         34         66         1,136         2,495           2000         1,671         213         101         2,216         4,201           2001         2,900         978         219         780         4,877           2002         2,193         1,545         220         465         4,423           2003         1,897         984         191         671         3,742           2004         1,446         708         205         270<                                                                 |                    |          | _              |          |           |       |
| 1992         2,530         -         4         1,160         3,694           1993         2,110         -         8         812         2,929           1994         1,939         -         33         581         2,553           1995         1,670         1         5         437         2,114           1996         1,735         4         8         439         2,186           1997         2,143         3         50         2,365         4,561           1998         2,153         15         77         3,603         5,847           1999         1,260         34         66         1,136         2,495           2000         1,671         213         101         2,216         4,201           2001         2,900         978         219         780         4,877           2002         2,193         1,545         220         465         4,423           2003         1,897         984         191         671         3,742           2004         1,446         708         205         270         2,629           2005 <sup>1)</sup> 1,168         328         217                                                                    |                    |          | _              | 3        |           |       |
| 1993         2,110         -         8         812         2,929           1994         1,939         -         33         581         2,553           1995         1,670         1         5         437         2,114           1996         1,735         4         8         439         2,186           1997         2,143         3         50         2,365         4,561           1998         2,153         15         77         3,603         5,847           1999         1,260         34         66         1,136         2,495           2000         1,671         213         101         2,216         4,201           2001         2,900         978         219         780         4,877           2002         2,193         1,545         220         465         4,423           2003         1,897         984         191         671         3,742           2004         1,446         708         205         270         2,629           2005 <sup>1)</sup> 1,168         328         217         235         1,947           2006 <sup>1)</sup> 1,138         -         239                                                              |                    |          | _              |          |           |       |
| 1994         1,939         -         33         581         2,553           1995         1,670         1         5         437         2,114           1996         1,735         4         8         439         2,186           1997         2,143         3         50         2,365         4,561           1998         2,153         15         77         3,603         5,847           1999         1,260         34         66         1,136         2,495           2000         1,671         213         101         2,216         4,201           2001         2,900         978         219         780         4,877           2002         2,193         1,545         220         465         4,423           2003         1,897         984         191         671         3,742           2004         1,446         708         205         270         2,629           2005 <sup>1)</sup> 1,168         328         217         235         1,947           2006 <sup>1)</sup> 1,138         -         239         347         1,724                                                                                                               |                    |          | _              | 8        |           |       |
| 1996         1,735         4         8         439         2,186           1997         2,143         3         50         2,365         4,561           1998         2,153         15         77         3,603         5,847           1999         1,260         34         66         1,136         2,495           2000         1,671         213         101         2,216         4,201           2001         2,900         978         219         780         4,877           2002         2,193         1,545         220         465         4,423           2003         1,897         984         191         671         3,742           2004         1,446         708         205         270         2,629           2005 <sup>1)</sup> 1,168         328         217         235         1,947           2006 <sup>1)</sup> 1,138         -         239         347         1,724                                                                                                                                                                                                                                                                      | 1994               |          | _              |          |           |       |
| 1997         2,143         3         50         2,365         4,561           1998         2,153         15         77         3,603         5,847           1999         1,260         34         66         1,136         2,495           2000         1,671         213         101         2,216         4,201           2001         2,900         978         219         780         4,877           2002         2,193         1,545         220         465         4,423           2003         1,897         984         191         671         3,742           2004         1,446         708         205         270         2,629           2005 <sup>1)</sup> 1,168         328         217         235         1,947           2006 <sup>1)</sup> 1,138         -         239         347         1,724                                                                                                                                                                                                                                                                                                                                                 | 1995               | 1,670    | 1              | 5        | 437       | 2,114 |
| 1998         2,153         15         77         3,603         5,847           1999         1,260         34         66         1,136         2,495           2000         1,671         213         101         2,216         4,201           2001         2,900         978         219         780         4,877           2002         2,193         1,545         220         465         4,423           2003         1,897         984         191         671         3,742           2004         1,446         708         205         270         2,629           2005 <sup>1)</sup> 1,168         328         217         235         1,947           2006 <sup>1)</sup> 1,138         -         239         347         1,724                                                                                                                                                                                                                                                                                                                                                                                                                               | 1996               |          | 4              | 8        | 439       |       |
| 1998         2,153         15         77         3,603         5,847           1999         1,260         34         66         1,136         2,495           2000         1,671         213         101         2,216         4,201           2001         2,900         978         219         780         4,877           2002         2,193         1,545         220         465         4,423           2003         1,897         984         191         671         3,742           2004         1,446         708         205         270         2,629           2005 <sup>1)</sup> 1,168         328         217         235         1,947           2006 <sup>1)</sup> 1,138         -         239         347         1,724                                                                                                                                                                                                                                                                                                                                                                                                                               | 1997               | 2,143    | 3              | 50       | 2,365     | 4,561 |
| 1999         1,260         34         66         1,136         2,495           2000         1,671         213         101         2,216         4,201           2001         2,900         978         219         780         4,877           2002         2,193         1,545         220         465         4,423           2003         1,897         984         191         671         3,742           2004         1,446         708         205         270         2,629           2005 <sup>1)</sup> 1,168         328         217         235         1,947           2006 <sup>1)</sup> 1,138         -         239         347         1,724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |          |                |          |           |       |
| 2001         2,900         978         219         780         4,877           2002         2,193         1,545         220         465         4,423           2003         1,897         984         191         671         3,742           2004         1,446         708         205         270         2,629           2005 <sup>1)</sup> 1,168         328         217         235         1,947           2006 <sup>1)</sup> 1,138         -         239         347         1,724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1999               |          | 34             | 66       | 1,136     |       |
| 2001         2,900         978         219         780         4,877           2002         2,193         1,545         220         465         4,423           2003         1,897         984         191         671         3,742           2004         1,446         708         205         270         2,629           2005 <sup>1)</sup> 1,168         328         217         235         1,947           2006 <sup>1)</sup> 1,138         -         239         347         1,724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2000               | 1,671    | 213            | 101      | 2,216     | 4,201 |
| 2002     2,193     1,545     220     465     4,423       2003     1,897     984     191     671     3,742       2004     1,446     708     205     270     2,629       2005¹¹)     1,168     328     217     235     1,947       2006¹¹)     1,138     -     239     347     1,724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2001               | 2,900    | 978            | 219      |           | 4,877 |
| 2003     1,897     984     191     671     3,742       2004     1,446     708     205     270     2,629       2005 <sup>1)</sup> 1,168     328     217     235     1,947       2006 <sup>1)</sup> 1,138     -     239     347     1,724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |          | 1,545          | 220      |           |       |
| 2005 <sup>1)</sup> 1,168 328 217 235 1,947 2006 <sup>1)</sup> 1,138 - 239 347 1,724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 1,897    |                | 191      |           | 3,742 |
| 2006 <sup>1)</sup> 1,138 - 239 347 1,724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2004               | 1,446    | 708            | 205      | 270       | 2,629 |
| 2006 <sup>1)</sup> 1,138 - 239 347 1,724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20051)             |          | 328            | 217      | 235       | 1,947 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2006 <sup>1)</sup> |          |                | 239      | 347       | 1,724 |

<sup>&</sup>lt;sup>1)</sup> Japan catch in 2005 and 2006 is provisional.

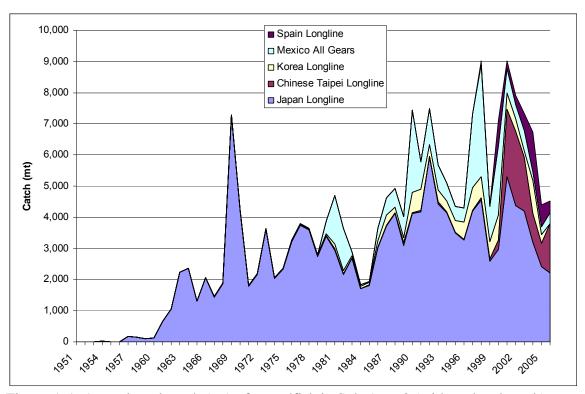



Figure A.1. Annual total catch (mt) of swordfish in Sub-Area 2 (with updated catch).

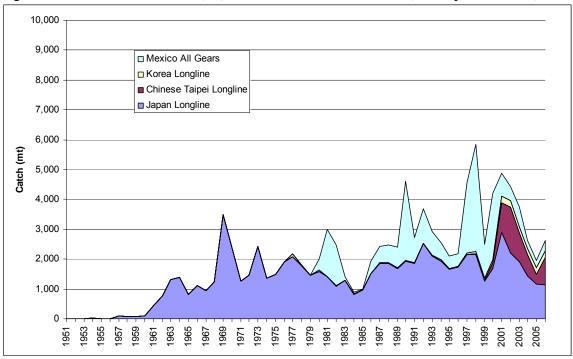



Figure A.2. For comparison, initial estimates of annual total catch (mt) of swordfish in Sub-Area 2 are provided without updated catch.

# Appendix B. Assignment of Spawning Quarter Based on Larval Occurrence

For this assessment, swordfish spawning was assigned to quarter 2 based on a review of larval occurrence below (Table B.1).

Table B.1. Assignment of spawning quarter based on larval occurrence.

| Sample Location                                              | Egg/Larval Occurrence                                                                                      |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Western North Pacific <sup>1</sup>                           | Larval Capture April through July.                                                                         |
| Central North Pacific <sup>1,2</sup>                         | Eggs and larvae occurred only in the months of April through July.                                         |
| Eastern Pacific <sup>1</sup>                                 | Little to no effort across to the far eastern Pacific.                                                     |
| Equatorial North Pacific <sup>1</sup> (Equator to 10 deg. N) | Lower larval swordfish catches spread out over all the seasons with highest larval captures in April-June. |

<sup>&</sup>lt;sup>1</sup>Nishikawa et al. (1985) larval capture data for 1956-1981.

Age at recruitment in Stock Synthesis will depend on estimated quarterly selectivity at length. For example, average quarterly selectivity at age (1990 - 2006) was calculated here from the estimated quarterly selectivity at length in (Courtney and Piner 2009b) (Figure B1).

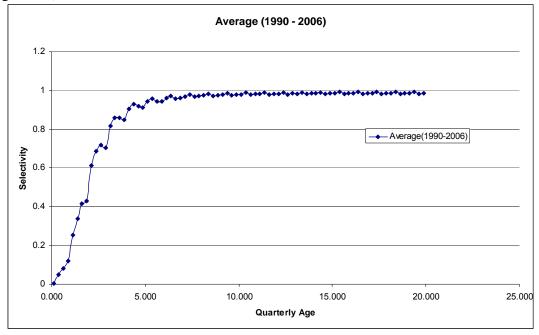



Figure B.1. Selectivity at age (average 1990 - 2006) from SS3 stock scenario 1, a single stock north of the equator (Courtney and Piner 2009b).

<sup>&</sup>lt;sup>1,2</sup>NOAA PIFSC egg and larval collections from Kona Hawaii 1997 to 2005 (Pers. Comm. Robert Humphrys NOAA PIFSC).

## **Appendix C. Sensitivity Analyses**

Sensitivity analyses for Stock Synthesis model runs were conducted for the ISC BILLWG intercessional workshop, Hakodate, Japan April 15-23, 2010, and presented here as an appendix.

## Sub-Area 1

The model for Sub-Area 1 was not sensitive to the minor changes made to the model since the preliminary assessment (Models 1 and 2) (Table C.1 and Figure C.1). Changing the block design for Japan Distant Water + Offshore Longline selectivity: Block 1 1951 – 1983; Block 2 1984 - 1993; Block 3 1994 – 2006 (Model 3) improved the fit to CPUE data without affecting the fit to length data (Table C.1 and Figure C.1). Model 3 was not sensitive to iteratively re-weighting sigma r or the effective sample size assigned to CPUE (Sensitivity run 4, and Model 4). The model for Sub-Area 1 was sensitive to assigning weight to CPUE in proportion to catch (Sensitivity run 3), to the weight assigned to the length data (Sensitivity runs 1 and 2), and to iteratively re-weighting the effective sample size assigned to length data (Sensitivity run 5) (Table C.1 and Figure C.1). As a result, the final model for Sub-Area 1 (Model 4) used iteratively re-weighted sigma r and iteratively re-weighted input standard errors for CPUE, but did not use iteratively re-weighted effective sample size for length composition data (Tables 12.1 and C.1; Figure C.1).

### Sub-Area 2

Similarly, the model for Sub-Area 2 was not sensitive to the updated catch data or to the minor changes made to the model since the preliminary assessment (Models 1 and 2) (Table C.2 and Figure C.2).

In contrast, the model for Sub-Area 2 was sensitive to minor changes made to the model during the sensitivity analysis conducted here (Table C.2, and Figure C.2). In particular, the sensitivity analyses indicated that model fits to the data for Sub-Area 2 oscillated between two states: 1) a state with relatively high stock biomass and low exploitation rates (e.g., sensitivity runs 1, 7, 8, 11, 14, and model 4); and 2) a state with relatively lower stock biomass and relatively higher exploitation rates (the remainder of the runs) (Table C.2, and Figure C.2). Model fits were particularly sensitive to the very small input standard errors from Chinese Taipei Distant Water Longline standardized CPUE in recent years. When the effect of these small standard errors was reduced (sensitivity runs 1, 7, 8, 11, 14, and model 4), residual plots of fits to Japan Offshore + Distant Water Longline standardized CPUE showed reduced autocorrelation with little effect to fits for Chinese Taipei Distant Water Longline standardized CPUE (not shown). For this reason, model 4 was chosen as the final model for Sub-Area 2. As a result, the final model for Sub-Area 2 (Model 4) used iteratively re-weighted sigma r, but did not use iteratively re-weighted input standard errors for CPUE, and did not use iteratively re-weighted effective sample size for length composition data (Tables 12.2, C.2, and Figure C.1).

All model runs for Sub-Area 2 resulted in estimated ending year female spawning stock biomass in 2006 above female spawning stock biomass at MSY (S\_2006/S\_MSY>1) (Figure C.2). However, some runs, (e.g., sensitivity run-12 which was equivalent to the final model for Sub-Area 1) resulted in ending year female spawning stock biomass (S\_2006/S\_MSY) close to female spawning stock biomass at MSY (S/S\_MSY =1)((Figure C.2).

The sensitivity analysis conducted here suggests that model results for Sub-Area 2 should be treated with caution. On the one hand, incomplete or inaccurate data can result in a lack of informative signal in fishery data, which can lead to unstable fits like those observed in the sensitivity analysis conducted here. In this regard, model stability for Sub-Area 2 might be improved by a more critical evaluation of all available fishery data by gear type, country, and spatial area including southeastern Pacific Ocean waters south of 20° S (e.g., Hinton and Maunder 2006). On the other hand, very low exploitation rates can also result in a lack of informative signal in the fishery data. As a consequence, if exploitation rates for swordfish in Sub-Area 2 truly are low (sensitivity runs 1, 7, 8, 11, 14, and model 4), then we should also be skeptical of the patterns of recruitment and abundance reported by the model because model fits are unstable (e.g., also see Kleiber and Yokawa 2004).

#### References

Hinton, M.G., and M. N. Maunder 2006. Status of the swordfish stock in the southeastern Pacific Ocean. Inter.-Amer. Trop. Tuna Comm. Stock Assessment Report 7: 249-282. IATTC Document SAR-7-07d.

Kleiber, P., and K. Yokawa. 2004. MULTIFAN-CL assessment of swordfish in the North Pacific. Working Paper. ISC Swordfish Working Group, January 29 and 31, 2004. ISC/04/SWO-WG/07.

Table C.1. Sensitivity analyses Sub-Area 1.

| Model                               | Run | Details                                                                                                                                                                                                                                           |
|-------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preliminary Assessment              |     | (Courtney and Piner 2009c)                                                                                                                                                                                                                        |
| Model 1                             | 1   | Changed spawning quarter from Q1 to Q2                                                                                                                                                                                                            |
| Model 2                             | 2   | Changed block design so that 2006 is now the base year for projections                                                                                                                                                                            |
| Sensitivity Run 1                   | 3   | Model-2 with added weight to CPUE proportional to catch (mt) from Japan, Chinese Taipei, and Hawaii during the years 1990-2007 (relative to a maximum of 1); and down-weighted effective sample size on length by 1/00*(model estimated R.M.S.E.) |
| Sensitivity Run 2                   | 4   | $Model-2\ with\ down-weighted\ effective\ sample\ size\ on\ length\ by\ 1/00* (model\ estimated\ R.M.S.E.)$                                                                                                                                       |
| Sensitivity Run 3                   | 5   | Model-2 with added weight to CPUE proportional to catch (mt) from Japan, Chinese Taipei, and Hawaii during the years 1990-2007 (relative to a maximum of 1)                                                                                       |
| Model 3                             | 6   | Model-2 with changed block design for Japan Distant Water + Offshore Longline selectivity: Block 1 1951 – 1983; Block 2 1984 - 1993; Block 3 1994 – 2006                                                                                          |
| Sensitivity Run 4                   | 6.1 | $\label{eq:model-3} \begin{tabular}{ll} Model-3 with sigma $r=0.6$; effective sample size CPUE = Input s.e.; and effective sample size length = Input square root (n) \\ \end{tabular}$                                                           |
| Model-4<br>(Final model Sub-Area 1) | 6.2 | $\label{eq:model-3} \begin{subarray}{ll} Model-3 with sigma $r$ = model estimated (R.M.S.E.); effective sample size CPUE = model estimated (R.M.S.E.); and effective sample size length = Input square root (n) \\ \end{subarray}$                |
| Sensitivity Run 5                   | 6.3 | Model-3 with sigma $r = model$ estimated (R.M.S.E); effective sample size CPUE = model estimated (R.M.S.E.); and effective sample size length = model estimated mean effective sample size                                                        |

Table C.2. Sensitivity analyses Sub-Area 2.

| Model                                     | Run | Details (Control In 1977) 2000 )                                                                                                                                                                                                                  |
|-------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preliminary Assessment                    |     | (Courtney and Piner 2009c)                                                                                                                                                                                                                        |
| Preliminary Assessment with Updated Catch |     | (Courtney and Piner 2009c) with updated catch from this report (Appendix B)                                                                                                                                                                       |
| Model 1                                   | 1   | Changed spawning quarter from Q1 to Q2                                                                                                                                                                                                            |
| Model 2                                   | 2   | Changed block design so that 2006 is now the base year for projections                                                                                                                                                                            |
| Sensitivity Run 1                         | 3   | Model-2 with added weight to CPUE proportional to catch (mt) from Japan, Chinese Taipei, and Hawaii during the years 1990-2007 (relative to a maximum of 1); and down-weighted effective sample size on length by 1/00*(model estimated R.M.S.E.) |
| Sensitivity Run 2                         | 4   | Model-2 with down weighted effective sample size on length by $1/00*$ (model estimated R.M.S.E.)                                                                                                                                                  |
| Sensitivity Run 3                         | 5   | Model-2 with added weight to CPUE proportional to catch (mt) from Japan, Chinese Taipei, and Hawaii during the years 1990-2007 (relative to a maximum of 1)                                                                                       |
| Model 3                                   | 6   | Model-2 with changed block design for Japan Distant Water + Offshore Longline selectivity: Block 1 1951 – 1983; Block 2 1984 - 1993; Block 3 1994 – 2006                                                                                          |
| Sensitivity Run 4                         | 7   | Model-2 with changed block design for Japan Distant Water + Offshore Longline selectivity: Block 1 1951 – 1994; Block 2 1995 – 2006                                                                                                               |
| Sensitivity Run 5                         | 8   | Model-2 with down-weighted effective sample size on length by $1/00*$ (model estimated R.M.S.E.); and changed block design for Japan Distant Water + Offshore Longline selectivity: Block 1 1951 – 1994; Block 2 1995 – 2006                      |
| Sensitivity Run 6                         | 9   | Model-2 with changed block design for Japan Distant Water + Offshore Longline selectivity: Block 1 1951 – 1983; Block 2 1984 - 1997; Block 3 1998 – 2006                                                                                          |
| Sensitivity Run 7                         | 10  | Model-3 CV Chinese Taipei CPUE = 0.20 for last 5 years                                                                                                                                                                                            |
| Sensitivity Run 8                         | 2.1 | $\label{eq:model-2} \begin{tabular}{ll} Model-2 with sigma $r=0.6$; effective sample size CPUE = Input s.e.; and effective sample size length = Input square root (n) \end{tabular}$                                                              |
| Sensitivity Run 9                         | 2.2 | $\label{eq:model-2} \begin{tabular}{ll} Model-2 with sigma $r$ = model estimated (R.M.S.E.); effective sample size CPUE = model estimated (R.M.S.E.); and effective sample size length = Input square root (n) \\ \end{tabular}$                  |
| Sensitivity Run 10                        | 2.3 | Model-2 with sigma $r = model$ estimated (R.M.S.E.); effective sample size CPUE = model estimated (R.M.S.E.); and effective sample size length = model estimated mean effective sample size                                                       |
| Sensitivity Run 11                        | 6.1 | Model-3 with sigma $r=0.6$ ; effective sample size CPUE = Input s.e.; and effective sample size length = Input square root (n)                                                                                                                    |
| Sensitivity Run 12                        | 6.2 | Model-3 with sigma $r = model$ estimated (R.M.S.E.); effective sample size CPUE = model estimated (R.M.S.E.); and effective sample size length = Input square root (n)                                                                            |
| Sensitivity Run 13                        | 6.3 | Model-3 with sigma $r = \text{model}$ estimated (R.M.S.E.); effective sample size CPUE = model estimated (R.M.S.E.); and effective sample size length = model estimated mean effective sample size                                                |
| Model 4<br>(Final model Sub-Area 2)       | 6.4 | $\label{eq:model-3} \begin{tabular}{ll} Model-3 with sigma $r$ = model estimated (R.M.S.E.); effective sample size CPUE = Input s.e.; effective sample size length = Input square root (n). \end{tabular}$                                        |
| Sensitivity Run 14                        | 6.5 | Model-3 with sigma r = model estimated (R.M.S.E.); effective sample size CPUE = Input s.e.; effective sample size length = Input square root (n); and estimated growth as single sex by manually setting male growth = female growth              |

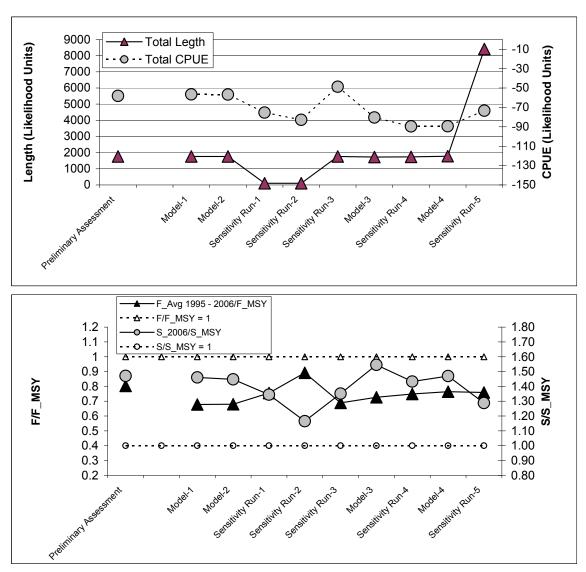



Figure C.1. Sensitivity analyses Sub-Area 1.

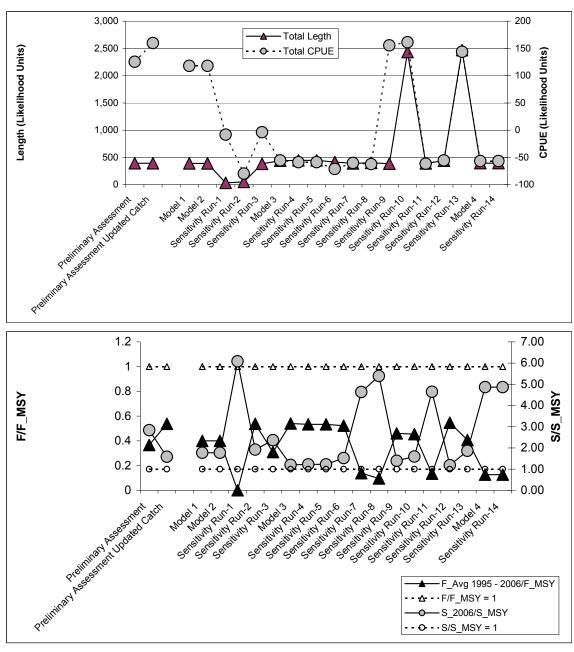



Figure C.2. Sensitivity analyses Sub-Area 2.