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Abstract 
This working paper presents analyses to standardize swordfish (Xiphias gladius) catch rates in 
two Hawaii-based longline fisheries, a shallow set fishery and a deep set fishery, during 1995-
2007.  In the Hawaii-based longline fishery, shallow-sets generally target swordfish, while deep-
sets target other species and catch swordfish incidentally.  Fishery data used to standardize catch 
rates included information on environmental conditions and fishing operations and was applied 
in an attempt to remove the effects of these factors on observed catch rates. Three generalized 
additive models (GAMs) were fit. Each GAM included the same response and predictor 
variables.  The first GAM was fit to all observed sets (shallow and deep combined). The second 
GAM was fit to shallow sets separately. The third GAM was fit to deep sets separately. The 
deviance residuals for the GAM fit to all sets (shallow and deep combined) were not normally 
distributed and were heteroskedastic when plotted against the predictors. As a result, predicted 
catch rates were estimated from GAMs fit separately to shallow sets and to deep sets.  Two time 
series of swordfish CPUE are recommended for consideration in stock assessment: Nominal 
CPUE from observed plus unobserved shallow sets, and GAM-predicted CPUE from observed 
plus unobserved shallow sets. Two additional time series of swordfish CPUE may be useful for 
exploratory purposes: Nominal CPUE from observed plus unobserved deep sets, and GAM-
predicted CPUE from observed plus unobserved deep sets. 

 

Introduction 
This working paper presents analyses to standardize swordfish (Xiphias gladius) catch rates in 
two Hawaii-based longline fisheries, a shallow set fishery and a deep set fishery, during 1995-
2007.  Swordfish catch rate standardization was based on observer data collected by the Hawaii 
Longline Observer Program of NOAA Fisheries.  Fishery data used to standardize catch rates 
included information on environmental conditions and fishing operations.  In general, the catch 
rate standardization was applied to attempt to remove the effects of these other factors on 
observed catch rates.  A generalized additive model (GAM) was fit to swordfish catch per set on 
observed sets. Coefficients from the fitted GAM were applied to unobserved sets from the 
Hawaii-based longline fishery logbook program of NOAA Fisheries. 
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In the Hawaii-based longline fishery, shallow-sets generally target swordfish, while deep-sets 
target other species and catch swordfish incidentally.  Swordfish targeted shallow-sets typically 
begin in the late afternoon/evening, use relatively low numbers of hooks and hooks per float (i.e., 
< 15 hooks per float) and result in relatively shallow sets.  In contrast, deep-sets typically target 
bigeye-tuna (Thunnus obesus) and begin around dawn, use relatively high numbers of hooks and 
hooks per float (i.e., ≥ 15 hooks per float) and result in relatively deeper sets.  
 
Effort in the Hawaii-based longline fishery has changed during the years 1995 – 2007 as a result 
of management restrictions designed to reduce turtle bycatch in the swordfish target sector.  Prior 
to December 23, 1999, the longline fishery was unrestricted.  From December 23, 1999 to March 
14, 2001, the longline fishery was subject to effort limitations, area restrictions, and increased 
observer coverage on the swordfish target sector.  From March 14, 2001 to April 2, 2004 there 
was a complete prohibition of Hawaii-based longline fishing that targeted swordfish.  After April 
2, 2004 until the present, the swordfish target sector has been allowed to resume under new 
guidelines that establish a turtle catch cap and mandate 100% observer coverage and a 
requirement of circle hooks and fish bait.  Prior to management restrictions, swordfish targeted 
sets were typically prosecuted with j-hooks and squid.  The turtle cap was reached in 2006 and 
Hawaii-based longline fishing that targeted swordfish was prohibited after March of 2006 for the 
remainder of the year.  The turtle cap was not reached in 2005 or 2007. 
 
Observed swordfish catches presented in this report were provided by the NOAA Fisheries 
Observer Program which places biological observers on-board commercial fishing vessels. The 
percentage of commercial vessels covered by NOAA observers has changed during the years 
1994 – 2007. Observer coverage began in 1994. Observers covered roughly half of the swordfish 
targeted sets in 1994 (48%).  From 1995–1999, the allocation of observer coverage was reduced 
to approximate fleet-wide effort and about 1/10 of swordfish targeted sets were observed (10-
13% by year).  Observer coverage increased on swordfish targeted sets in 2000 and 2001, but the 
fishery was subject to effort and area restrictions as outlined above until April 2004. After April 
2004, swordfish targeted sets resumed under mandatory 100% observer coverage. The deep-set 
sector has had 20% observer coverage since April, 2004.  
 
Unobserved swordfish catches presented in this report were provided by commercial fishing 
vessels to the NOAA Fisheries Logbook Program.  Logbook catch and effort data for swordfish 
in the Hawaii-based longline fishery were available from 1990 – 2007.  However, several 
predictors used in the GAM analysis, were not available prior to 1995. As a result, this GAM 
analysis of observed and unobserved swordfish catches in the Hawaii-based longline fishery was 
necessarily limited to the years 1995 – 2007. 

 

Methods 
Three GAMs were fit. Each GAM included the same response and predictor variables.  The first 
GAM was fit to all observed sets (shallow and deep combined). The second GAM was fit to 
shallow sets separately. The third GAM was fit to deep sets separately.  
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GAMs were fit to observed swordfish catch rates (log(catch)) using procedures outlined in 
Walsh et al. (2002; 2005; 2006) 
 

 1
log( ) , ,

p

j j jj
S x d


  

where 
  represents the conditional mean catch for the set of predictors ( 1 2, ,... px x x ), 

jS represents the smoother function, and 

jd represents the degrees of freedom. 

 
Catch per set was the response variable. An overdispersed Poisson model for catch rates was 
assumed, with a natural log link function, and with the overdispersion parameter estimated 
automatically.   
 
Seven predictive variables were included in the GAM analyses: (1) begin-set time as a factor 
with 6 levels, one for every 4 hrs; (2) date of fishing as a factor with one level for each 
year/quarter; (3) latitude; (4) number of hooks per float; (5) number of hooks total; (6) sea 
surface temperature (SST°C), and (7) longitude. Order of entry was predicated upon reduction in 
the Akaike Information Criterion (AIC).  
 
Predictors were chosen from a combination of operational and environmental predictors based on 
analogy with blue marlin, Makaira nigricans (Walsh et al. 2006). Walsh et al. (2006) 
demonstrated that the operational predictor hooks per float was informative and significantly 
affected longline catch of blue marlin. Hooks per float has not been used earlier because it was 
correlated with the number of hooks and was not recorded as consistently in logbooks prior to 
2005. Bigelow et al. (1999) and Walsh et al. (2006) also demonstrated that environmental 
predictors such as sea surface temperature were informative and significantly affected longline 
catch of swordfish and blue marlin. As a result, hooks per float and sea surface temperature were 
included here. Yellowfin tuna/set and bigeye tuna/set were not included as potential swordfish 
predictors because these variable explained relatively little deviance (<1%) in Walsh et al. 
(2006)’s analyses. 
 
Some predictive variables were correlated, as expected. For example, SST and latitude, were 
significantly negatively correlated (r = -0.367; df = 29654; P < 0.001).  Similarly, hook numbers, 
hooks per float, and begin-set time were operational variables designed to serve as a proxy for 
the species targeted by the longline set.   
 
The degrees of freedom were chosen based upon a sensitivity analysis conducted with the same 
predictors for blue marlin (Walsh et al. 2006).  The initial blue marlin GAM was allotted 4 
degrees of freedom per year per predictor. The final blue marlin GAM was allotted 70% fewer 
degrees of freedom for each predictor, except date.  The sensitivity analysis showed that the final 
GAM with fewer degrees of freedom was both more parsimonious and had more accurate 
predictions (Walsh et al. 2006).  The degrees of freedom for the swordfish GAM presented here 
are consistent with the final blue marlin GAM.  
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Maunder and Punt (2004) note that there is no standard inference for generalized linear model 
(GLM) or GAM performance.  In practice, Maunder and Punt (2004) suggest that relative model 
fit is measured by deviance. Venables and Dichmont (2004) define the deviance as the 
difference, distributed as a chi-squared statistic under the null hypothesis, that the reduced model 
explains as much variability as the full model.  Maunders and Punt (2004) also recommend an 
ad-hoc way to deal with adding variables based on relative increases in deviance by only adding 
explanatory variables if the deviance is reduced by a pre-specified percentage (e.g., 0.5 or 2%). 
 
Here, an analysis of deviance was conducted following Walsh et al. (2006) by fitting the GAMs 
one-step-ahead.  For each GAM, a pseudo-R2 value (ρ2) was evaluated to measure the goodness 
of model fit from the null deviance (DNULL) and residual deviance (DRESIDUAL) as  

 2 NULL RESIDUAL

NULL

D D
D  . 

The deviance explained was then the difference in 2 from the full and reduced (or Null) model.  
Similarly, change in AIC (AIC) and change in residual deviance (Residual deviance) were 
also calculated from the full and reduced (or Null) model.  A deviance percentage for adding 
explanatory variables was not pre-specified.  Instead, the reduction in deviance from the addition 
of each explanatory variable was reported as the percentage of deviance explained.   
 
Diagnostics for model fit were evaluated using the deviance residuals from each fitted GAM.  
Venables and Dichmont (2004) note that there are many definitions for residuals in GAMs and 
suggest that the most widely used residuals are deviance residuals.  The deviance residual for an 
observation is defined by Venables and Dichmont (2004) as the signed square root of the 
deviance increment for that observation; then just as the squares of the residuals in a linear model 
add to the residual sum of squares, the squares of the deviance residuals add to the deviance in a 
GAM. Venables and Dichmont (2004) suggest that once the deviance residuals are calculated, 
diagnostics are analogous to those for linear regression except that residuals from linear 
regression are replaced with deviance residuals from GAMs.  Venables and Dichmont (2004) 
caution that deviance residuals may be unsatisfactory for binary data and other frequency data 
with small numbers, but otherwise, discreetness in the data is not a problem.   
 
Coefficients from the GAM fitted to observed sets were applied to unobserved sets from the 
Hawaii-based longline fishery NOAA Fisheries logbook program.  Predicted catch per set was 
obtained by applying coefficients from the fitted GAM to observed and unobserved sets.  
Predicted catch per set was divided by the number of hooks and re-expressed as catch-per-unit-
effort (CPUE with units of swordfish per 1000 hooks). Mean predicted catch rates were 
examined separately for shallow-sets (i.e., < 15 hooks per float) and deep-sets (i.e., ≥ 15 hooks 
per float).  Predicted swordfish catch rates were compared to nominal catch rates on both 
observed and unobserved sets with correlations of both raw data and mean data at quarterly time 
step. 
 
Trends in standardized CPUE were computed separately for the shallow sets and deep sets to 
depict the swordfish targeted and incidental catches respectively.  Trends in standardized CPUE 
were estimated from the exponent of the fitted coefficients for year/quarter multiplied by the 
mean CPUE in 1995 Q1.  Linear regression was used to evaluate the slope of the resulting 
standardized trend in observed CPUE (swordfish per 1000 hooks) relative to 1995 Q1. 
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Results 
31,622 observed longline sets were available for the analysis during the years 1995 – 2007.  The 
data were limited to 29,736 sets by removing sets with missing predictors.  The data were further 
limited to a total of 29,654 observed sets by removing sets below the equator.  As a result, a total 
of 29,654 observed sets were included in the GAM analysis for shallow and deep sets combined 
(Table 1-A). 
 
An additional 56 observed shallow-sets were removed during Hawaii-longline prohibition on 
shallow-sets for swordfish (2001 Q2 – 2004 Q3, and 2006 Q2 – 2006 Q4).  The shallow sets in 
the database corresponded to rope-gear rather than monofilament, or were misclassified sets.  
Rope-gear should probably be re-classified as deep-sets because the gear sinks deeper than 
monofilament with the same number of hooks per float.  As a result, a total of 5,866 observed 
shallow sets were included in the GAM analysis for shallow sets (Table 1-B). A total of 23,732 
observed deep sets were included in the GAM analysis for deep sets. (Table 1-C).   
 
152,038 unobserved longline sets were available for the analysis during the years 1995 – 2007.  
For GAM analysis, the data were limited to 143,429 sets by removing sets with missing 
predictors.  The data were further limited by removing unobserved sets with predictor values that 
were outside the range of predictor values for observed sets (e.g., Appendix A).  As a result, a 
total of 143,091 unobserved sets were included in the GAM analysis for shallow and deep sets 
combined (Table 2-A).  A total of 25,729 unobserved shallow sets were included in the GAM 
analysis for shallow sets (Table 2-B).  A total of 116,983 unobserved deep sets were included in 
the GAM analysis for deep-sets (Table 2-C).     
 
40% of all observed sets (shallow and deep combined) captured at least one swordfish, 96% of 
observed shallow-sets captured at least one swordfish, and 26% of observed deep-sets captured 
at least one swordfish (e.g., Appendix A, Figure 1-A).  25% of unobserved sets (shallow and 
deep combined) captured at least one swordfish, 84% of unobserved shallow sets captured at 
least one swordfish, and 12% of unobserved deep sets captured at least one swordfish (e.g., 
Appendix A, Figure 1-B). 
 

GAM Fits 
The swordfish GAM fit to all sets (shallow and deep combined) explained 83% of the null 
deviance of observed swordfish catch per set (Table 3-A).  All predictors yielded highly 
significant deviance reductions (all F-tests, P < 0.001), but only the predictors begin set time and 
year/quarter each individually explained more than 1% of the null deviance (Table 3-A). 
 
The swordfish GAM fit separately to shallow sets explained 45% of the null deviance of 
observed swordfish catch per set (Table 3-B).  All predictors yielded highly significant deviance 
reductions (all F-tests, P < 0.001).  The predictors begin set time, year/quarter, latitude, number 
of hooks, longitude, and hooks per float each individually explained more than 1% of the null 
deviance (Table 3-B). 
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The swordfish GAM fit separately to deep sets explained 18% of the null deviance of observed 
swordfish catch per set (Table 3-C).  All predictors yielded highly significant deviance 
reductions (all F-tests, P < 0.001).  Only the predictors year/quarter, latitude, sea surface 
temperature, and number of hooks each individually explained more than 1% of the null 
deviance (Table 3-C). 
 

GAM Diagnostics 
Smoother plots were produced for each predictor to depict the effect of individual predictors on 
the logarithm of catch (Appendix B).  The relative influence of each predictor on the response 
variable can be inferred by comparing the scale of the change on the y-axis between predictors. 
The stippled lines represent one standard error.  Rug plots along the x-axis depict the distribution 
of the values (sample size) of the predictors.   
 
Qqnorm plots of deviance residuals were produced for each fitted GAM (Appendix C).  The 
deviance residuals were normally distributed for the GAM fit to observed shallow sets 
(Appendix C; Figure 1-B).  The deviance residuals were not normally distributed for the GAM 
fit to all sets (shallow and deep combined) or for the GAM fit separately to deep sets (Appendix 
C; Figures 1-A, and 1-C).  The deviance residuals for these GAMs had a larger than expected 
proportion of residuals piled up over a narrow region, possibly suggesting difficulty estimating 
the large number of zero catches (Appendix C; Figures 1-A, and 1-C). 
 
Deviance residuals were plotted against each predictor for each fitted GAM (Appendix C).  
Deviance residuals were heteroskedastic for the GAM fit to all sets (shallow and deep combined) 
for the predictors latitude, hooks per float, and number of hooks (Appendix C – Figure 2).  The 
heteroscedasticity in deviance residuals was largely removed by fitting the GAMs separately for 
shallow and deep sets (Appendix C – Figures 3 and 4). 
 

GAM Predicted Catch Rates 
Predicted catch rates were estimated from GAMs fit separately to shallow sets and to deep sets.  
The GAM fit to all sets (shallow and deep combined; not shown here) yielded a large 
discrepancy between predicted and nominal catches for the deep-sets and indicated that there 
was a mismatch between the fitted GAM and the observed values for deep-sets.  The GAM fit to 
all sets (shallow and deep combined) had more accurate predictions of shallow set catches. 
Given that most of the swordfish catch (>90%) is taken on directed shallow sets, we interpreted 
the poor predictive capacity of the fitted GAM (shallow and deep combined) on deep-sets to 
indicate model misspecification.  This result along with the heteroscedastic residuals of the fitted 
GAM (shallow and deep combined) suggested that GAMs be fit separately for shallow and deep 
sets. 
 
For the GAM fit separately to shallow sets, mean nominal and predicted CPUE per quarter from 
observed sets were highly correlated (r = 0.99, df = 34, P < 0.001, Figure 1-A).  Nominal and 
predicted CPUE per quarter for unobserved sets were also highly correlated (r = 0.84, df = 29, P 
< 0.001, Figure 1-B).  There were no predictions for shallow-set longline CPUE between 2001 
Q2 and 2004 Q3 and again between 2006 Q2 and 2006 Q4 coinciding with the prohibition of 
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swordfish targeted sets in the Hawaiian longline fishery.  The relatively large sample sizes and 
small standard errors for the predictor year/quarter beginning in 2004 Q4 reflect the nearly 100% 
observer coverage for the shallow set swordfish target sector beginning in 2004 Q4 (Appendix 
A, Figure 3-A).  In contrast, there were very few unobserved shallow sets after the 2000 Q2 
(Appendix A, Figure 3-B).  This may explain the relatively large discrepancies between 
predicted CPUE and nominal CPUE for unobserved shallow-sets beginning in year 2000 (Figure 
1-B.) 
 
For the GAM fit separately to deep sets, mean nominal and predicted CPUE per quarter from 
observed sets were not significantly correlated (r = 0.29, df = 50, P = 0.03, Figure 2-A).  
Nominal and predicted CPUE per quarter for unobserved sets were significantly correlated (r = 
0.42, df = 50, P = 0.001, Figure 2-B).  There were relatively large discrepancies between 
predicted CPUE and nominal CPUE prior to year 2000 for both observed and unobserved deep 
sets (Figures 2-A, and 2-B.).  The discrepancies prior to year 2000 may reflect the relatively low 
number of observed deep sets prior to 2000 (Appendix A, Figure 3-B). 
 
For the GAMs fit separately to shallow sets and to deep sets, the linear trends in CPUE were not 
significant, P = 0.2 and P = 0.5 respectively (Figures 3-A, and 3-B). 
  

Discussion 
Walsh et al. (2006) concluded that GAMs for blue marlin, with relatively fewer degrees of 
freedom were both more parsimonious and had more accurate predictions. Walsh et al. (2006) 
demonstrated that the operational predictor hooks per float was informative and significantly 
affected longline catch of blue marlin. Hooks per float has not been used earlier because it was 
correlated with the number of hooks and was not recorded as consistently in logbooks prior to 
2005.  Bigelow et al. (1999) and Walsh et al. (2006) also demonstrated that environmental 
predictors such as sea surface temperature were informative and significantly affected longline 
catch of swordfish and blue marlin.  The GAM used here was similar to the reduced degrees of 
freedom model (predictive model) of Walsh et al. (2006) with an additional operational predictor 
for hooks per float and an environmental predictor for sea surface temperature. 
 
The deviance residuals for the GAM fit to all sets (shallow and deep combined) were not 
normally distributed (Appendix C; Figures 1-A) and were heteroskedastic when plotted against 
the predictors latitude, hooks per float, and number of hooks (Appendix C – Figure 2).  The 
heteroscedasticity in deviance residuals was largely removed by fitting the GAMs separately for 
shallow and deep sets (Appendix C – Figures 3 and 4).  Additionally, there were large 
differences in catch rates between the shallow- and deep-set sectors of the Hawaii-based longline 
fishery, reflecting the fact that swordfish is targeted by the former and taken incidentally in the 
latter (Figures 1 and 2).  The large difference in catch rates suggests that the variability in the 
response variable (swordfish catch) likely differs between target sectors.  The heteroskedastic 
residuals from the GAM fit to all sets (shallow and deep combined) and the large difference in 
catch rates between target sectors support the separate GAM analysis for the shallow and deep 
sets.  
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The GAM fit separately to shallow sets, suggests that there was not a significant linear trend in 
shallow-set CPUE during the years 1995 – 2007 (Figure 3-A).  The GAM predicted CPUE for 
both observed and unobserved sets appeared to increase in 2000 (Figures 1-A and 1-B).  
However, the apparent increase in swordfish CPUE was coincident with management actions 
beginning December 23, 1999 and extending to March 14, 2001 which included effort 
limitations, area restrictions, and increased observer coverage on the swordfish target sector.  
Swordfish targeted sets were prohibited from March 14, 2001 until April 2, 2004.  After April 2, 
2004 until the present, the swordfish target sector has been allowed to resume under new 
guidelines that establish a turtle catch cap, mandated 100% observer coverage, required use of 
circle hooks and fish bait.  Prior to management restrictions, swordfish targeted sets were 
typically prosecuted with j-hooks and squid.  We don’t know the effect on CPUE of changing to 
circle hooks and fish bait as there was no overlap with previous tuna hooks and squid bait.  
These apparent increases in CPUE coincident with management restrictions in place after Dec 
23, 1999 suggest that management actions may have affected the catchability of swordfish in the 
Hawaii-based longline fishery beginning in 2000 Q1.  These changes in catchability may not be 
accounted for by the set of variables used in the standardization. 
 
The GAM fit separately to deep sets suggests that there was not a significant linear trend in deep-
set CPUE during the years 1995 – 2007 (Figure 3-B).  However, the deviance residuals for the 
GAM fit to deep sets were not normally distributed (Appendix C; Figures 1-C).  Deviance 
residuals plotted against the predictors year quarter and begin set time were not normally 
distributed (Appendix C – Figure 4).  The deviance residuals were also somewhat 
heteroskedastic when plotted against the predictor latitude (Appendix C – Figure 4).  Together, 
these diagnostics suggest that the GAM fit separately to deep sets may not have fit the large 
number of zero catches accurately and that caution should be used when interpreting the 
predictions from the GAM fit to deep sets.   
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Conclusions 
Two time series of swordfish CPUE are recommended for consideration in stock assessment: 
Nominal CPUE from observed plus unobserved shallow sets, and GAM-predicted CPUE from 
observed plus unobserved shallow sets.  Two additional time series of swordfish CPUE may be 
useful for exploratory purposes:  Nominal CPUE from observed plus unobserved deep sets, and 
GAM-predicted CPUE from observed plus unobserved deep sets. 
 

 
 
 

GAM Type Year Quarter Excluding  

Shallow-set  Nominal 
CPUE 

1995 Q1 – 2007 Q4 2001 Q2 – 2004 Q3 
2006 Q2 – 2006 Q4 

Shallow-set  GAM 
predicted 
CPUE 

1995 Q1 – 2007 Q4 2001 Q2 – 2004 Q3 
2006 Q2 – 2006 Q4 

Deep-set Nominal 
CPUE 

1995 Q1 – 2007 Q4 Exploratory purposes only 

Deep-set GAM 
predicted 
CPUE 

1995 Q1 – 2007 Q4 Exploratory purposes only 
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Tables 
 
Table 1. Data included in the GAM analyses from observed sets. 
 

A. Observed Sets (Shallow and Deep Combined) 

Variable N Min. Max. Mean Stdev CV 

Swordfish catch (n)      29,654 0.00 73.00 2.79 6.07 217.79 

Begin-set time (hrs)     29,654 0.00 2359.00 978.65 486.88 49.75 

Year/Quarter     29,654 1995.125 2007.875    

Latitude (°N)     29,654 0.22 44.51 21.84 6.65 30.46 

Hooks (n)     29,654 19.00 4,110.00 1,777.59 588.24 33.09 

Hooks per float (n)     29,654 2.00 53.00 22.64 9.51 42.01 

Longitude (°W)     29,654 -179.96 -137.95 -158.72 5.58 -3.52 

SST (°C)     29,654 14.71 30.31 25.47 2.30 9.04 

Vessel length (m)     29,654 32.00 94.00 71.03 10.25 14.43 

 
 

B. Observed Shallow Sets 

Variable N Min. Max. Mean Stdev CV 

Swordfish catch (n) 5,866 0.00 73.00 12.51 8.06 64.46 

Begin-set time (hrs) 5,866 0.00 2359.00 1867.99 358.40 19.19 

Year/Quarter 5,866 1995.125 2007.875    

Latitude (°N) 5,866 15.08 44.51 29.82 3.97 13.31 

Hooks (n) 5,866 19.00 1,285.00 825.18 153.74 18.63 

Hooks per float (n) 5,866 2.00 14.00 4.31 0.78 18.00 

Longitude (°W) 5,866 -179.96 -138.11 -158.26 7.64 -4.83 

SST (°C) 5,866 14.71 28.28 23.19 3.15 13.59 

Vessel length (m) 5,866 52.10 91.40 77.62 6.04 7.78 

 
 

C. Observed Deep Sets 

Variable N Min. Max. Mean Stdev CV 

Swordfish catch (n) 23,732 0.00 24.00 0.38 0.86 225.30 

Begin-set time (hrs) 23,732 0.00 2358.00 758.37 139.16 18.35 

Year/Quarter 23,732 1995.125 2007.875    

Latitude (°N) 23,732 0.22 35.45 19.86 5.63 28.34 

Hooks (n) 23,732 19.00 4,110.00 2,015.06 379.56 18.84 

Hooks per float (n) 23,732 15.00 53.00 27.20 2.94 10.79 

Longitude (°W) 23,732 -173.68 -137.95 -158.83 4.93 -3.11 

SST (°C) 23,732 16.74 30.31 26.03 1.60 6.14 

Vessel length (m) 23,732 32.00 94.00 69.40 10.42 15.02 
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Table 2. Data included in the GAM analyses from unobserved sets. 
 

A. Unobserved Sets (shallow and deep combined) 

Variable N Min. Max. Mean Stdev CV 

Swordfish catch (n) 143,091 0.00 62.00 1.55 4.28 277.03 

Begin-set time (hrs) 143,091 0.00 2400.00 927.11 453.62 48.93 

Year/Quarter 143,091 1995.125 2007.875    
Latitude (°N) 143,091 0.23 45.43 21.10 6.07 28.76 

Hooks (n) 143,091 21.00 4,100.00 1,734.29 563.07 32.47 

Hooks per float (n) 143,091 2.00 53.00 23.68 9.40 39.71 

Longitude (°W) 143,091 -179.95 -138.00 -159.37 5.61 -3.52 

SST (°C) 143,091 14.71 30.31 25.06 2.44 9.72 

Vessel length (m) 143,091 32.00 94.00 68.46 10.80 15.78 

 
 

B. Unobserved Shallow Sets 

Variable N Min. Max. Mean Stdev CV 

Swordfish catch (n) 25,729 0.00 62.00 7.77 7.23 93.00 

Begin-set time (hrs) 25,729 0.00 2400.00 1725.28 514.82 29.84 

Year/Quarter 25,729 1995.125 2007.875    
Latitude (°N) 25,729 1.15 45.43 27.51 4.88 17.72 

Hooks (n) 25,729 40.00 2,200.00 800.92 149.38 18.65 

Hooks per float (n) 25,729 2.00 14.00 4.69 1.45 30.97 

Longitude (°W) 25,729 -179.95 -138.00 -160.18 8.28 -5.17 

SST (°C) 25,729 14.71 28.36 22.23 3.14 14.13 

Vessel length (m) 25,729 44.30 92.70 74.17 8.10 10.92 

 
 

C. Unobserved Deep Sets 

Variable N Min. Max. Mean Stdev CV 

Swordfish catch (n) 116,983 0.00 38.00 0.18 0.71 400.36 

Begin-set time (hrs) 116,983 0.00 2359.00 750.85 142.65 19.00 

Year/Quarter 116,983 1995.125 2007.875    
Latitude (°N) 116,983 0.23 41.27 19.68 5.35 27.19 

Hooks (n) 116,983 21.00 4,100.00 1,942.11 381.72 19.65 

Hooks per float (n) 116,983 15.00 53.00 27.89 3.18 11.41 

Longitude (°W) 116,983 -177.85 -138.50 -159.20 4.81 -3.02 

SST (°C) 116,983 16.44 30.31 25.69 1.71 6.66 

Vessel length (m) 116,983 32.00 94.00 67.20 10.93 16.26 

 



 13

Table 3.  Analysis of deviance of observed swordfish catches, January 1995 – December 2007. 
Entries are the reductions in the Akaike Information Criterion and residual deviance, the F-test 
and its significance, and the stepwise percent deviance reductions. 
 

A. Swordfish GAM fit to Shallow and Deep Sets Combined 

Predictor AIC ∆ AIC 
∆ Residual 
deviance 

Pesudo 
R2 d.f. (npar) Fenter P 

Deviance 
explained 

Null 244,085.6  244,083.6      

Begin-set time (Factor) 51,542.2 192,543.4 192,553.4 78.9 5 21,071.0 < 0.001 78.89 

Year/Quarter (Factor) 47,126.9 4,415.4 4,517.4 80.7 51 50.9 < 0.001 1.85 

Latitude (°N) 45,466.0 1,660.8 1,680.2 81.4 8.8 101.3 < 0.001 0.69 

Hooks (n) 44,229.7 1,236.3 1,245.9 81.9 3.8 152.8 < 0.001 0.51 

Hooks per float (n) 43,185.6 1,044.2 1,053.7 82.4 3.8 134.5 < 0.001 0.43 

Longitude (°W) 42,708.6 476.9 496.4 82.6 8.7 31.1 < 0.001 0.20 

SST (°C) 42,311.8 396.8 406.8 82.7 3.8 52.0 < 0.001 0.17 

Vessel length (m) 42,269.1 42.7 52.5 82.8 3.9 6.9 < 0.001 0.02 

Total        82.7 

 
B. Swordfish GAM fit to Shallow Sets 

Predictor  AIC ∆ AIC 
∆ Residual  
deviance 

Pesudo  
R2 d.f. (npar) Fenter P 

Deviance 
explained 

Null 31,861.1  31,859.1      

Begin-set time (Factor) 24,558.2 7,302.9 7,312.4 23.0 4.8 410.7 < 0.001 23.0 

Year/Quarter (Factor) 21,564.1 2,994.1 3,059.7 32.6 32.8 28.5 < 0.001 9.6 

Latitude (°N) 20,173.9 1,390.2 1,409.8 37.0 9.8 47.1 < 0.001 4.4 

Hooks (n) 19,055.2 1,118.7 1,128.8 40.5 5.1 76.7 < 0.001 3.5 

Longitude (°W) 18,266.8 788.4 808.4 43.1 10.0 29.5 < 0.001 2.5 

Hooks per float (n) 17,735.0 531.7 541.6 44.8 4.9 40.7 < 0.001 1.7 

SST (°C) 17,606.2 128.8 138.7 45.2 5.0 10.4 < 0.001 0.4 

Vessel length (m) 17,548.7 57.5 67.6 45.4 5.0 5.0 < 0.001 0.2 

Total        45.1 

 
C. Swordfish GAM fit to Deep Sets 

Predictor  AIC ∆ AIC 
∆ Residual  
deviance 

Pesudo  
R2 d.f. (npar) Fenter P 

Deviance 
explained 

Null 27,681.9  27,679.9      

Year/Quarter (Factor) 24,599.4 3,082.5 3,184.5 11.5 51 44.8 < 0.001 11.5 

Latitude (°N) 24,049.2 550.2 570.2 13.6 8.5 40.7 < 0.001 2.1 

SST (°C) 23,536.2 513.0 523.0 15.5 3.7 81.8 < 0.001 1.9 

Hooks (n) 23,255.4 280.8 290.8 16.5 4.0 45.8 < 0.001 1.1 

Hooks per float (n) 23,032.0 223.3 230.8 17.3 3.7 51.7 < 0.001 0.8 

Begin-set time (Factor) 22,863.5 168.5 179.4 18.0 5 27.2 < 0.001 0.6 

Longitude (°W) 22,825.2 38.3 56.7 18.2 8.5 5.1 < 0.001 0.2 

Vessel length (m) 22,811.5 13.7 23.2 18.3 3.7 4.1 < 0.001 0.1 

Total        18.2 
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Figures 
Figure 1. Nominal (solid trace) and predicted (dashed trace) swordfish CPUE from the swordfish 
GAM fit to observed shallow-sets. 
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A.Nominal and Predicted Swordfish CPUE: Observed Shallow Sets 
 

 Solid trace (circles): Nominal catch rates 
Dashed trace (triangles): GAM-predicted catch rates 

Correlation of raw data r = 0.53; df = 5,864; P < 0.001
Correlation of means r = 0.99; df = 34; P < 0.001
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B.Nominal and Predicted Swordfish CPUE: Unobserved Shallow Sets 
 

 Solid trace (circles): Nominal CPUE 
Dashed trace (triangles): GAM-predicted CPUE

Correlation of raw data r = 0.58; df = 25,725; P < 0.001
Correlation of means r = 0.84; df = 29; P < 0.001
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Figure 2. Nominal (solid trace) and predicted (dashed trace) swordfish CPUE from the swordfish 
GAM fit to deep-sets. 
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A.Nominal and Predicted Swordfish CPUE: Observed Deep Sets
 

 Solid trace (circles): Nominal catch rates 
Dashed trace (triangles): GAM-predicted catch rates 

Correlation of raw data r = 0.45; df = 23,730; P < 0.001

Correlation of means r = 0.29; df = 50; P = 0.03
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B. Nominal and Predicted Swordfish CPUE: Unobserved Deep Sets 
 

 Solid trace (circles): Nominal CPUE 
Dashed trace (triangles): GAM-predicted CPUE 

Correlation of raw data r = 0.33; df = 116,981; P < 0.001

Correlation of means r = 0.42; df = 50; P = 0.0015
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Figure 3. Standardized trends in swordfish CPUE from GAMs fit separately to observed shallow 
sets and to observed deep sets. 

Date of fishing (qtr/yr)

C
P

U
E

 (
R

el
at

iv
e 

to
 1

99
5 

Q
1)

1994 1996 1998 2000 2002 2004 2006 2008

0
2

4
6

8
10

14
18

22
26

30

A.Standardized Swordfish CPUE 

 Observed Shallow Sets

Linear slope b = 0.3; t = 1.3; P = 0.2
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Appendix A – Frequency of Occurrence (Sets) by Predictor 
Figure 1-A. Swordfish Catch: Observed Sets. 
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Figure 1-B. Swordfish Catch: Unobserved Sets. 
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Figure 2-A. Begin Set Time: Observed Sets. 
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Figure 2-B. Begin Set Time: Unobserved Sets. 
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Figure 3-A. Year/Quarter: Observed Sets. 
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Figure 3-B. Year/Quarter: Unobserved Sets. 
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Figure 4-A. Latitude: Observed Sets. 
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Figure 4-B. Latitude: Unobserved Sets. 
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Figure 5-A. Longitude: Observed Sets. 
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Figure 5-B. Longitude: Unobserved Sets. 
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Figure 6-A. Number of Hooks: Observed Sets. 
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Figure 6-B. Number of Hooks: Unobserved Sets. 
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Figure 7-A. Hooks per Float: Observed Sets. 
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Figure 7-B. Hooks per Float: Unobserved Sets. 
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Figure 8-A. Sea Surface Temperature: Observed Sets. 
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Figure 8-B. Sea Surface Temperature: Unobserved Sets. 
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Figure 9-A. Vessel Length: Observed Sets. 
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Figure 9-B. Vessel Length: Unobserved Sets. 
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Appendix B – Smoother Traces by Predictor 
Figure 1. GAM Fit to Observed Sets (Shallow and Deep Combined). 
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Figure 2. GAM Fit to Observed Shallow Sets. 
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Figure 3. GAM Fit to Observed Deep Sets. 
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Appendix C –Deviance Residuals 
 
Figure 1-A. GAM Fit to Observed Sets (Shallow and Deep Combined). 
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Figure 1-B. GAM Fit to Observed Shallow Sets. 
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Figure 1-C. GAM Fit to Observed Deep Sets. 
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Figure 2. GAM Fit to Observed Sets (Shallow and Deep Combined). 
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Figure 3. GAM Fit to Observed Shallow Sets. 
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Figure 4. GAM Fit to Observed Deep Sets. 
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