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Abstract 

Stock assessment models play a crucial role in fisheries management. However, they are increasingly 

affected by process errors in population dynamics, which can lead to overly optimistic stock estimates. 

One major issue is the inadequate separation of changes in catchability from process error. Traditional 

CPUE standardization has difficulty distinguishing true population density signals from observational 

errors, which reduces the accuracy of stock assessments. Moreover, existing stock assessment 

models do not adequately account for spatial and migratory dynamics, which is particularly 

problematic for highly migratory species. To overcome these limitations, we developed the Spatio-

Temporal Population Model (STPM), which separates population dynamics from observational 

processes using a state-space modeling approach. We applied STPM to North Pacific albacore tuna 

and estimated spatial stock depletion and quarterly population density from 1994 to 2023. The model 

successfully distinguished process and observation errors, providing a more detailed representation 

of spatial stock structure than traditional approaches. Despite these advancements, challenges 

remain, particularly in computational efficiency and model refinement. Future efforts will focus on 

optimizing computational performance, integrating a logistic production function, and improving the 

observation model to enhance stock assessment reliability. 

 

Introduction 

For the sustainable use of fish stocks, stock assessments are conducted worldwide for over 331 stocks 

(Ricard et al., 2012). However, various issues persist in stock assessments. The most serious issue is 

the increasing trend of process errors in many stock assessment models over the years (Merino et al., 

2022). Estimates derived from these models tend to be more optimistic than reality, raising concerns 

that appropriate stock management might not be implemented (Edgar et al., 2024). One possible 

cause of this issue is that the increase in catchability has not been adequately reflected in the stock 

assessment models. This oversight may lead to a rise in process errors. 

To account for changes in catchability, CPUE standardization has been applied (Maunder 

2001). However, traditional CPUE standardization simultaneously handles variations in population 

dynamics and observational errors in fishery data, complicating accurate correction. For example, 

spatial effects strongly depend on the spatial density of the target species, and fishing patterns are 

influenced by changes in the species distribution. Therefore, constructing stock assessment models 

that separate population processes from observational errors, such as state-space models, is 

essential (Punt et al., 2020). 

Accurately understanding the population dynamics of highly migratory species like tuna 

requires proper incorporation of the movement process. However, current stock assessment models 

do not adequately consider this aspect. Highly migratory species like tuna move significantly between 

time steps, prompting the proposal and development of stock assessment models that account for 
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migration (Fournier et al., 1998). However, existing models assume meta-population frameworks that 

divide the sea area into large regions. The estimation of migration rates and stock quantities can vary 

significantly depending on the area definitions. To address this issue, introducing spatial statistical 

knowledge into population dynamics models is effective (Thorson et al., 2017). 

Furthermore, current stock assessments face a challenge: changing the settings of the stock 

assessment model requires modifications to the input data, reducing the model’s reproducibility and 

complicating comparisons and validations between different models. For example, different models 

may use distinct methods for CPUE standardization, making comparisons with the same data difficult. 

Additionally, when the model structure differs, necessary preprocessing changes, complicating the 

uniform processing of data. As a result, applying criteria such as AIC and cross-validation becomes 

challenging, and objective evaluation between models is difficult. To resolve this issue, it is necessary 

to model the process up until data collection, which can be achieved by constructing a state-space 

model. 

To address these problems, we extended the time-series stock assessment model to a 

spatiotemporal model and developed the Spatio-Temporal Population Model (STPM), which 

separates population dynamics processes from observation processes. This paper provides an 

overview of STPM and presents preliminary analysis results from applying it to North Pacific albacore. 

Additionally, we discuss future challenges and perspectives. 

 

Material and methods 

Data set 

We used the total catch of North Pacific albacore and Japanese longline catch-and-effort data. We 

compiled data from 1994 to 2023 for each. For the total catch, we aggregated the values for Japanese 

longline and pole-and-line fisheries quarterly based on the logbook data, while we calculated the 

total catch for other countries as a quarter of the total (Figure 1). Additionally, to reduce 

computational costs, we used Japanese longline catch-and-effort data aggregated by year, quarter, 

and 1° × 1° grid. 

 

Process model 

We created the mesh using the R software package fmesher (Figure 2). The population dynamics 

model varies over time at each node of the mesh, and we assumed that there is correlation between 

the nodes. In this study, we adopted a spatially extended discrete Gompertz population dynamics 

model as the process model. Specifically, we used model where the logarithmic population density 

𝑏𝑛,𝑡 at node n and time step t is described by equation: 

𝑏𝑛,𝑡+1 = 𝛼𝑛 + 𝛽𝑏𝑛,𝑡 − 𝑓𝑡 + 𝜖𝑛,𝑡, 

where, 𝛼𝑛 and 𝛽 are parameters of the Gompertz population model. 𝛼𝑛 depends on space, thus 𝛼𝑛 



 4 

follows a Gaussian Markov random field (GMRF) with mean 𝛼0, 𝛼𝑛~GMRF(𝛼0, Σ). 𝑓𝑡 represents the 

fishing mortality coefficient at time step t, and 𝜖𝑛,𝑡 is the spatially dependent process error, which 

follows 𝜖𝑡~GMRF(0, Σ) . The time step 𝑡  is set as a quarter, with the assumption that a constant 

recruitment occurs each quarter. 

 

Observation model 

In the observation model, we considered the process by which Japanese longline logbook data and 

total catch data are obtained at different spatiotemporal scales. We assumed that the catch data in 

logbook obtained from observations follow a Tweedie distribution, expressed as 𝐶𝑖~𝑇𝑤(𝜇𝑖 , 𝑝, 𝜙), 

1 < 𝑝 < 2 ∧ 𝜙 > 0 , where 𝑝  is the power parameter, and 𝜙  is the dispersion parameter. The 

expected catch 𝜇𝑖  is defined as ln(𝜇𝑖) = 𝑏𝑖 + 𝑞𝑖 + ln(effort𝑖) , where 𝑏𝑖 , 𝑞𝑖 , and effort𝑖  represent 

the logarithmic population density at observation point 𝑖, the catchability coefficient, and the effort 

level, respectively. The population density 𝑏𝑖  is estimated using design matrix 𝐀, 𝑏𝑖 = 𝐀𝑏𝑛. We also 

assumed that the catchability coefficient 𝑞𝑖 follows a normal distribution with mean 𝑞0 and variance 

𝜎𝑞
2 and the effort was set to 1,000 hooks. 

 

Parameter estimation and total biomass calculation 

Considering that the area of the Voronoi regions centered around each node varies, the total biomass 

(𝐵𝑡) is calculated by summing the product of population density and the area of each Voronoi region: 

𝐵𝑡 = ∑ exp𝑇
𝑡=1 (𝑏𝑛,𝑡 + ln(𝑤𝑛)) flag𝑛, 

where 𝑤𝑛 represents the area of the Voronoi region at node 𝑛, and flag𝑛 is a binary vector used to 

distinguish areas where stock estimates are made. The smallest unit of area is set to 1° × 1°, which 

matches the resolution of the observation data. Although the actual size of 1° × 1° regions varies, for 

simplicity, we used an average value. The observed total catch 𝑌𝑡 is calculated using 𝑓𝑡 and 𝐵𝑡 with 

the following equation: ln(𝑌𝑡) = ln(𝐵𝑡) + ln(1 − 𝑒𝑥𝑝(−𝑓𝑡)) + 𝜀𝑡 , were, 𝜀𝑡  represents the 

observation error, and we fixed its variance 𝜎𝜀
2 at 0.1. Although estimating the observation error is 

possible, preliminary simulation tests showed a strong correlation with 𝑓𝑡  making convergence 

difficult. Therefore, this study assumes high accuracy in the catch statistics. For parameter estimation, 

we applied maximum likelihood estimation using TMB. The likelihood was calculated based on 

Japanese longline catch-and-effort data and total catch. 

 

Result and discussion 

Unfortunately, the program has not yet converged, requiring further adjustments. As in conventional 

stock assessments, we organized the time-series data on population dynamics, catch, and fishing 

mortality (Figure 3). While spikes (periodicity) in catch and fishing mortality were aligned, they did 
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not necessarily match the periodicity of stock size. The periodicity in catch is likely influenced by 

fishing grounds, which are affected by the migration of small fish. To eliminate these spikes, it may 

be necessary to develop an age-structured model. 

Catchability was estimated based on the number of catch and effort data points, that is, the 

total number of observations, while process errors were estimated for each node, year, and quarter 

(Figure 4). Fishing catchability remained nearly constant over time. In contrast, process errors 

exhibited a slight but noticeable trend similar to fluctuations in population dynamics. These results 

suggest that process errors and observation errors were effectively separated. 

Quarterly spatial density estimates from 1994 to 2023 were also obtained (Figure 5). 

Although Japanese longline operations in the northeastern Pacific have significantly declined, a 

certain level of density was still estimated. In spatial statistical models, estimating density in areas 

with no data is inherently difficult. However, state-space models allow population dynamics to 

fluctuate even in the absence of observations, making such estimations possible. 

Using this new model, it became possible to visualize spatial depletion rates (Figure 6). The 

reference stock condition was set as the equilibrium state of the Gompertz model, 𝐵𝑒𝑞𝑖 =

𝛼𝑖 (1 − 𝛽)⁄ . High depletion rates appeared near the equatorial western region and north of Hawaii. 

Since the equatorial region originally has low catch levels, its reliability as an information source is 

questionable. Additionally, large fluctuations in areas where stock abundance is inherently low may 

not be meaningful, requiring careful consideration in their presentation. 

 

Challenges and Future Plans 

• The computational burden is high, requiring a review of the code. In particular, the calculation 

of 𝑓𝑡 is computationally intensive, necessitating a reconsideration of the model itself. 

• To apply this model in stock assessments, it is necessary to estimate Maximum Sustainable Yield 

(MSY). Therefore, instead of the Gompertz population model, a logistic production function 

should be considered. 

• The observation model needs to be expanded. In this study, aggregated observation data at the 

year, quarter, and 1×1 degree resolution were used to reduce computation time. 

• The model should allow the incorporation of covariates, similar to CPUE standardization. This 

improvement may facilitate convergence. 

• 𝑓𝑡 also varies spatially, it may need to be incorporated into the model. While technically feasible, 

spatially aggregated catch data may be required. 

• The model does not currently account for migration rates. Although this is technically possible 

(Thorson et al., 2017), it has a lower priority due to potential convergence issues and 

computational costs. 
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Figure 1. Total historical albacore catches in the North Pacific (1971-2023). 

 

 

Figure 2. Spatial effort of Japanese longline fishery and nodes for spatiotemporal population model. 
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Figure 3. Time series results from spatiotemporal population model. 
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Figure 4. Comparison of historical changes in log catchability and process error. 
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Figure 5. Spatiotemporal density trend of North Pacific albacore stock estimated by spatiotemporal 

population model. 
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Figure 6. Spatial depletion of North Pacific albacore. 

 


