Update standardized CPUE for North Pacific albacore caught by the Japanese longline data from 1976 to 2018

Ko Fujioka, Daisuke Ochi, Hirotaka Ijima and Kiyofuji Hidetada
National Research Institute of Far Seas Fisheries, Fisheries Research and Education Agency
Orido 5-7-1, Shimizu, Shizuoka, Japan.

Email: fuji88@affrc.go.jp

[^0]
Abstract

Summary In this document, adult abundance indices (i.e. standardized CPUEs) of albacore were calculated from operational data reported by Japanese longline fisheries for definition of area 2 as an input data for stock assessment in 2020. Data of quarter 1 in the period between 1996 to 2018 were used, since the operational patterns (hooks per basket) were stable in the season and it was the main fishing season of longline targeted this species. Considering necessity of the calculation of coefficient of variation of standardized CPUE, we carried out generalize liner mixed model analysis with Bayesian inference for the CPUE standardization. The standardized CPUE calculated in this document used the same procedures and assumptions of previous study (Ochi et al., 2017), which showed similar trends with the previous CPUE values, indicating that it can be a candidate for the next stock analysis.

Introduction

Abundance index (i.e. standardized CPUE) as an input data for the stock assessment model is usually calculated from operational data with statistical modeling methods such as a generalized liner model (GLM, Maunder and Punt 2004). In the case of albacore, the abundance indices of juveniles are obtained from the data of pole-and-line (Kinoshita et al. 2016), while that of adults are based on longline fisheries data (Ijima et al. 2014). When applying the GLM to the CPUE standardization, however, it is difficult to consider factors that affect variance of CPUE estimation such as operation areas or vessel IDs. Besides, it is also difficult to calculate accurate coefficient of variation (CVs) for each standardized CPUE by GLM with maximum likelihood estimation which is required in the in the stock assessment model (Stock Synthesis). To cope with these difficulties, arbitrary CV values have been input in the past stock assessment models for the north Pacific albacore stocks. To improve the model settings and reduce uncertainty, Ochi et al. (2017) had implemented to calculate data-oriented CV with the Bayesian inference methods.

The Bayesian inference is considered preferable to the maximum likelihood method for the CPUE standardization because accuracy of the prediction such as coefficient of variation can be easily calculated from its posterior distribution. Ochi et al. (2017) showed the standardized CPUE and CV by using the generalized liner mixed with Bayesian inference methods from Japanese longline fisheries data, and the results were determined reasonable to use in the stock assessment model as an input data as adult abundance indices (ISC 2017).

In this document, the Japanese longline fishery data was updated for the period 19762018 and the standardized CPUE with CV was calculated as using the same methods of Ochi et al. (2017), then the trends of the standardized CPUE compared to the previous results in 2017 was discussed. In addition, we calculated the juvenile abundance indices which is the standardized CPUE and CV based on the data of Japanese longline fisheries operated relatively in high latitudinal areas (Fig. 1a). Although the juvenile abundance indices have been estimated based on the pole-and-line fishery data as shown in the stock assessment in 2017 (Kinoshita et al. 2016), the CPUE trends based on the longline would provide a comprehensive perspective for this species.

Data and Methods

Fisheries Data

Updated data and the data period

Longline operational datasets include the number of albacore caught, year, quarter, location type of fleet (Distant, Offshore, Coastal), hooks per basket, total hooks and vessel ID for each operation. We updated the data during 1976-2018 and compared the updated data to the previous study (Ochi et al., 2017) in the number of records and the number of albacore caught for each year, which is shown in Table 1. As the summary of the data, decadal spatial distributions of albacore catch, effort (number of hooks) and nominal CPUE (catch/effort*1000) are illustrated in Figure 2.

Because the number of hooks per basket and vessel IDs were not available in the data recorded during 1971-1975, the operational data from 1976 were used for the analysis. Additionally, the data format and target range of the data collection was changed in 1994. The longline operation patterns targeted albacore had changed significantly in 1990s (Ochi et al., 2017), and the hooks per basket stabilized around 15 to 20 after 1994. Ijima et al. (2017) also described that catch at length of the longline fishery in area 2 had an obvious shift in the middle of the 1990s. These previous studies have been implying the need for reduction of uncertainty in the estimation of standardized CPUE due to variations in the operational patterns. Therefore, the previously calculated standardized CPUE along with the stock assessment in 2017 employed the data from 1996 (Ochi et al., 2017; ISC 2017). The calculation of the standardized CPUE in this document also adhere the previous studies and the stock assessment, thus employed the data from 1996 to 2018.

Definition of area and quarter for adult and juvenile abundance indices

Considering the migration patterns of this species recognized so far (Fig. 1a), Longline operational data recorded in Japanese logbook was used for the calculation of
the adult abundance index in area 2 and juvenile abundance index in area $1 \& 3$ (Fig. 1b). In this documents, the area was defined from the catch at length frequency recorded in the longline fishery operating areas (Ijima et al., 2017) and by following the previous studies (Ochi et al., 2017; ISC 2017). The data period selected for the analysis was based on the quarter 1 with higher albacore catches compared to other the quarters (Table 2) for both juvenile and adult abundance indices. Area 2 had larger fish (adults) regardless of quarters in the catch at length data compared to area $1 \& 3$ that observed smaller juveniles especially in 1-2 quarters (Ijima et al., 2017). These trends are shown in Figure 3a and 3b, with decadal spatial distributions of albacore catch, effort (number of hooks) and nominal CPUE (catch/effort*1000) in area 2 and area $1 \& 3$. Appendix A and B also show the same data in area 4 and 5.

CPUE standardization

Generalized liner mixed model (GLMM) was applied for the estimation of the standardized CPUE. It is expected to better explain CPUE variation among vessels and operation areas without over-estimation by assuming these variables as random factors than GLM which was used in the past analysis (Ijima et al., 2014). Because the dataset includes reasonable number of zero catch operations (Ochi et al., 2017), zero-inflated negative binomial (ZINB) error distribution had been adopted. The ZINB distribution is characterized by mixture of Bernulli distribution with parameter p (rate of zerooccurrence) and negative binomial distribution with parameters μ (mean) and θ (scale). Probability mass functions of Bernulli and negative binomial distribution were calculated as below.

$$
\begin{aligned}
& \operatorname{Bernoulli}(y \mid \theta)=\left\{\begin{array}{c}
\theta \quad \text { if } y=1 \\
1-\theta \text { if } y=0
\end{array}\right. \\
& \operatorname{NegBinomial}(y \mid \alpha, \beta)=\binom{y+\alpha-1}{\alpha-1}\left(\frac{\beta}{\beta+1}\right)^{\alpha}\left(\frac{1}{\beta+1}\right)^{y}
\end{aligned}
$$

Catch number of albacore in the i th operation $\left(\right.$ ALBcatch $\left._{i}\right)$ is described as below.

and p, μ and θ were extended by following equations.

$$
\begin{aligned}
& \mu=\exp \left(\log \left(\widehat{\text { cpue }}_{i}\right)+\log \left(\frac{\text { hooks }_{i}}{1000}\right)\right) \\
& \operatorname{logit}(p)=\alpha_{z}+\beta_{z 1} y r_{i}+\beta_{z 2} q r_{i}+\beta_{z 3} \text { hph }_{i}+\beta_{z 4} \text { fleet }_{i}+r_{z \text { latlon }_{i}}+r_{z i d_{i}} \\
& \log \left(\widehat{\text { cpue }}_{i}\right)=\alpha+\beta_{1} y r_{i}+\beta_{2} q t r_{i}+\beta_{3} h p b_{i}+\beta_{4} \text { fleet }_{i}+r_{\text {latlon }_{i}}+r_{\text {id }_{i}} \\
& r_{\text {latlon }_{i}} \sim \operatorname{Normal}\left(0, \sigma_{1}{ }^{2}\right) ; r_{i_{i}} \sim \operatorname{Normal}\left(0,{\sigma_{2}}^{2}\right) \\
& \theta \sim \operatorname{HalfCauchy}(25) ;{\sigma_{1}}^{2} \sim \operatorname{HalfCauchy}(25) ;{\sigma_{2}}^{2} \sim \operatorname{HalfCauchy}(25) \\
& r_{z l a t l o n}^{i}
\end{aligned} \sim \operatorname{Normal(0,\sigma _{z1}{}^{2});r_{zid_{i}}\sim \operatorname {Normal}(0,\sigma _{z2}{}^{2})} \begin{aligned}
& \sigma_{z 1}{ }^{2} \sim \operatorname{HalfCauchy}(25) ;{\sigma_{z 2}}^{2} \sim \operatorname{HalfCauchy}(25)
\end{aligned}
$$

where i indicates operation id, $\widehat{\text { cpue }}$ indicates expected CPUE, ALBcatch and hooks indicates albacore catch in number and number of hooks in each operation, θ indicates scale parameter, $y r$, qtr, $h p b$ and fleet indicate operation year (categorical), quarter (categorical), hooks per basket (categorical) and fleet type (categorical; 3 categories; distant, offshore and coastal), respectively. $\beta_{1}-\beta_{4}$ and $\beta_{z 1}-\beta_{z 4}$ indicate vectors of coefficients of $y r, q t r, h p b$ and fleet, $r_{\text {latlon }}, r_{i d}, r_{z l a t l o n}$ and $r_{z i d}$, indicate random effects of operation area ($5^{\circ} \times 5^{\circ}$ grid; categorical)) and vessel identity (categorical), $\sigma_{1}{ }^{2}, \sigma_{2}{ }^{2}, \sigma_{z 1^{2}}{ }^{2}$ and $\sigma_{z 2}{ }^{2}$ indicate variance of random variables.

Posteriors and predicted standardized CPUE were calculated with the variational Bayesian method (Automatic differentiation variational inference, ADVI).

The standardized CPUE in specific year $y r\left(s t d C P U E_{y r}\right)$ was calculated based on the framework of lsmeans as described below.

```
predictedCPUE \(E_{i j}=\exp \left(\widehat{\alpha}_{l}+\hat{\beta}_{1, i j}+\hat{\beta}_{2, i j} q t r_{j}+\hat{\beta}_{3, i j} h p b_{j}+\hat{\beta}_{4, i j}\right.\) fleet \(\left._{j}\right)\)
lsmean \(_{i}=\frac{1}{N_{j}} \sum_{j=1}^{N_{j}}\left(\right.\) predictedCPUE \(\left._{i j}\right)\)
stdCPUE \(_{y r}=\left\{\frac{1}{N_{i}} \sum_{i=1}^{N_{i}}\right.\) lsmean \(\left._{i}\right\}\)
\(N_{j}=K \times L \times M ; N_{i}=500\)
```

where N_{i} indicates total number of iterations in ADVI algorism. In Bayesian inference, each set of estimated parameters (i.e., posteriors) in the model was repeatedly calculated along with the likelihood function of the model. N_{j} indicates total cases of prediction dataset which includes all possible combination of explanatory variables without variables of random effect in year $y r$. K, L and M indicates number of categories in quarter, hooks per basket and fleet type. $\widehat{\alpha}_{\mathrm{i}}$ and $\widehat{\beta}_{1}-\widehat{\beta}_{4}$ indicates estimated posteriors of each coefficient and intercept, respectively. Therefore, 95% Bayesian credible interval and CV
of standardized CPUE could be calculated from lsmean based on the posteriors. Calculated standardized CPUEs and CVs were shown in Table 3.

We used R 3.6.1 for data processing and summarizing the estimation output, and Stan 2.18 .2 (http://mc-stan.org/) for parameter estimation by automatic differential variational inference (ADVI). The ADVI algorism maximizes its lower bound of marginal likelihood (ELBO) by automatic differentiation. Thus, only converged model was adopted for the latter results of the analysis.

Results and Discussion

As the adult abundance indices, the standardized CPUE calculated in this document shows similar fluctuation trends with that of Ochi et al. (2017) (Fig. 5), although those values were slightly lower among years compared to previous study in the period 19962015. Updated standardized CPUE for each year of 2016-2018 were 25.9, 27.3, 31.0, respectively. With the data summary, calculated standardized CPUEs, fitted value of the GLMM and Pearson residuals of adults were illustrated in Figure 4a. Also, these values of juveniles are shown in Figure 4b. Yearly trends of standardized CPUE remained approximately at the same level since 2000 to the present with several peaks (Figure 4b). When we examined the timing of these prominent peaks between juvenile and adult indices (Fig. 6), it was detected five peaks showing that an adult peaks appearance after 3 years from a juvenile peak. This means that their migration patterns were properly reflected in the catch at length data of the longline fishery, and the area definition and seasons defined for the standardization were set appropriately. In the future, further quantitative analysis will be required. Calculated values of standardized CPUEs and CVs for both adult and juvenile abundance indices were given in Table 3.

Reference

Ijima, H. and Satoh, K. (2014) Abundance indices of albacore tuna for the Stock Synthesis III by Japanese longline fishery in the north west Pacific Ocean. ISC/14/ALBWG01.

Ijima, H. Ochi, D. and Kiyofuji, H. (2017) Estimation for Japanese catch at length data of North Pacific albacore tuna (Thunnus alalunga). ISC/17/ALBWG/04.
ISC (2017) Stock assessment of albacore tuna in the north Pacific Ocean in 2017. Report of the albacore working group, 12-17 July 2017, Vancouver, Canada.
Kinoshita, J., Ochi, D. and Kiyofuji, H. (2016) Update standardized CPUE for North Pacific albacore caught by the Japanese pole and line data from 1972 to 2015. ISC/16/ALBWG-02/04.

Kiyofuji, H. (2013) Reconsideration of CPUE for albacore caught by the Japanese pole and line fishery in the northwestern North Pacific Ocean. ISC/13/ALBWG-1/11. Kiyofuji, H. (2014) Update standardized CPUE for North Pacific albacore caught by the Japanese pole and line data. ISC/14/ALBWG-01/06.
Maunder, M. N., and Punt, A. E. (2004). Standardizing catch and effort data: a review of recent approaches. Fisheries Research, 70(2), 141-159.
Ochi, D., Ijima, H., Kinoshita, J. and Kiyofuji, H. (2016) New fisheries definition from Japanese longline North Pacific albacore size data. ISC/16/ALBWG-02/03
Ochi, D., Ijima, H. and Kiyofuji, H. (2017) Abundance indices of albacore caught by Japanese longline vessels in the North Pacific during 1976-2015. ISC/17/ALBWG/01
(a)

(b)

Figure 1. (a) A schematic model of migration pathways of immature and adult albacore (Thunnus alalunga), and the five areas used in the stock assessment models in 2017. (b) The area definition of Japanese longline fisheries and target areas of this study which are considered as core areas of albacore distribution.

Figure 2. Decadal spatial distributions of (a) albacore catch, (b) effort (number of hooks), and (c) CPUE (catch/effort*1000) that were aggregated by 5×5 degrees in the all area during 1976-2018.

Quarter 1

(a) Albacore catch

(b) Longline effort

(c) CPUE

Quarter 2

Figure 3a. Decadal spatial distributions of (a) albacore catch, (b) effort (number of hooks), and (c) CPUE (catch/effort*1000) in area 2 that were aggregated by 5×5 degrees during 1976-2018.

Quarter 3
a) Albacore catch

(b) Longline effort

(c) CPUE

Quarter 4

Figure 3a. Continue

Quarter 1

(b) Longline effort

Quarter 2

Figure 3b. Decadal spatial distributions of (a) albacore catch, (b) effort (number of hooks), and (c) CPUE (catch/effort*1000) in area $1 \& 3$ that were aggregated by 5×5 degrees during 1976-2018.

Quarter 3

Quarter 4

(b) Longline effort

Figure 3b. Continue

Figure 4a. Data summary and result standardized CPUE in the analysis during 19962018 in area 2 of quarter 1. Distribution of albacore catch (left top), annual change of hooks per basket (right top), frequency of fleet type (left middle), nominal and standardized CPUE and 95\% Bayesian credible interval (blue shaded area; right middle), scatter plot between fitted value of the GLMM and Pearson residuals (left bottom), and distribution of Pearson residuals in each year (right bottom).

Figure 4b. Data summary and result standardized CPUE in the analysis during 19962018 in area $1 \& 3$ of quarter 1. Distribution of albacore catch (left top), annual change of hooks per basket (right top), frequency of fleet type (left middle), nominal and standardized CPUE and 95\% Bayesian credible interval (blue shaded area; right middle), scatter plot between fitted value of the GLMM and Pearson residuals (left bottom), and distribution of Pearson residuals in each year (right bottom).

Figure 5. Comparison of two standardized CPUEs with 95\% Bayesian credible interval (blue; Ochi et al. 2017, red; the present study) and nominal CPUE (black) in area 2.

Figure 6. Comparison of immature abundance index (top) and adult abundance index (bottom) (i.e., standardized CPUEs) in the period 1996-2018. The peaks that correspond to each index with time-lags are numbered.

Table 1 Summary of updated longline operational data between 1976 and 2018 compared with previous data used in the stock assessment 2017 (Ochi et al. 2017).

Year	Number of total records		Differences	Number of ALB catches		Differences	Updated catch rate
	Ochi et al. 2017	Present		Ochi et al. 2017	Present		
1976	184,952	184,952	0	881,781	881,781	0	0
1977	183,284	183,284	0	836,220	836,220	0	0
1978	184,291	184,291	0	723,254	723,254	0	0
1979	220,229	220,229	0	952,351	952,351	0	0
1980	236,820	236,820	0	990,846	990,846	0	0
1981	246,888	246,888	0	1,422,739	1,422,739	0	0
1982	223,291	223,291	0	1,289,776	1,289,776	0	0
1983	200,810	200,810	0	1,217,265	1,217,265	0	0
1984	211,832	211,832	0	1,180,879	1,180,879	0	0
1985	204,778	204,778	0	1,145,105	1,145,105	0	0
1986	202,123	202,123	0	1,064,261	1,064,261	0	0
1987	195,750	195,750	0	1,013,851	1,013,851	0	0
1988	195,092	195,092	0	1,124,801	1,124,801	0	0
1989	193,051	193,051	0	994,689	994,689	0	0
1990	187,018	187,018	0	1,139,052	1,139,052	0	0
1991	190,861	190,861	0	1,080,452	1,080,452	0	0
1992	177,520	177,520	0	1,158,391	1,158,391	0	0
1993	173,546	173,546	0	1,489,594	1,489,594	0	0
1994	213,174	213,174	0	2,315,490	2,315,490	0	0
1995	215,780	215,780	0	2,315,871	2,315,871	0	0
1996	209,736	209,736	0	2,373,051	2,373,051	0	0
1997	201,354	201,354	0	2,681,323	2,681,323	0	0
1998	198,817	198,817	0	2,732,157	2,732,157	0	0
1999	179,480	179,480	0	2,225,648	2,225,648	0	0
2000	178,368	178,368	0	2,029,797	2,029,797	0	0
2001	180,748	180,748	0	2,122,987	2,122,987	0	0
2002	171,149	171,149	0	1,987,395	1,987,395	0	0
2003	171,374	171,374	0	1,770,829	1,770,829	0	0
2004	165,426	165,426	0	1,798,401	1,798,401	0	0
2005	155,365	155,365	0	2,147,369	2,147,369	0	0
2006	147,553	147,553	0	2,131,829	2,131,829	0	0
2007	138,882	138,882	0	2,071,064	2,071,064	0	0
2008	132,954	132,954	0	1,831,252	1,831,252	0	0
2009	123,737	123,737	0	1,951,172	1,951,172	0	0
2010	123,719	123,719	0	1,973,829	1,973,829	0	0
2011	115,687	115,712	25	1,955,538	1,956,577	1,039	0.1
2012	111,711	112,077	366	2,380,636	2,390,665	10,029	0.4
2013	102,234	102,692	458	2,075,021	2,084,455	9,434	0.5
2014	94,506	95,431	925	1,841,719	1,862,206	20,487	1.1
2015	81,721	88,576	6,855	1,752,529	1,863,047	110,518	6.3
2016		86,905			1,485,119		
2017		81,968			1,437,119		
2018		78,382			1,215,975		

Table 2 Annual albacore catches by quarter in each area, and the colors indicate catch levels (red; high, white; middle, blue; low).

Area 1					Area 3				Area 1\&3			
Year	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1976	21,531	1,540	0	421	1,930	274	2,014	7,907	23,461	1,814	2,014	8,328
1977	41,746	234	4	1,076	2,033	159	1,903	6,160	43,779	393	1,907	7,236
1978	4,131	187	3	1,450	1,428	303	1,096	7,321	5,559	490	1,099	8,771
1979	6,605	694	0	1,318	3,169	375	1,362	6,824	9,774	1,069	1,362	8,142
1980	21,411	4,155	0	370	1,162	119	1,599	8,282	22,573	4,274	1,599	8,652
1981	18,394	361	0	5,282	3,191	659	2,625	8,771	21,585	1,020	2,625	14,053
1982	42,443	1,299	0	557	2,998	376	4,268	8,061	45,441	1,675	4,268	8,618
1983	33,998	2,986	92	955	3,562	594	2,165	7,293	37,560	3,580	2,257	8,248
1984	17,778	918	52	1,594	2,563	578	3,491	9,222	20,341	1,496	3,543	10,816
1985	31,059	966	0	3,433	2,661	466	2,691	6,847	33,720	1,432	2,691	10,280
1986	30,148	1,186	0	1,696	2,017	329	2,390	6,140	32,165	1,515	2,390	7,836
1987	21,201	707	0	5,819	867	237	1,518	5,503	22,068	944	1,518	11,322
1988	24,308	3,659	50	951	1,881	244	2,251	5,079	26,189	3,903	2,301	6,030
1989	13,364	4,393	0	232	2,071	107	973	4,057	15,435	4,500	973	4,289
1990	25,135	3,617	0	1,017	1,281	87	905	4,222	26,416	3,704	905	5,239
1991	15,493	4,150	173	1,318	1,621	23	1,439	5,012	17,114	4,173	1,612	6,330
1992	20,375	7,769	0	797	1,280	25	708	3,242	21,655	7,794	708	4,039
1993	56,774	17,612	0	2,285	659	96	1,256	3,645	57,433	17,708	1,256	5,930
1994	191,135	85,000	25	8,757	1,643	88	3,742	6,633	192,778	85,088	3,767	15,390
1995	156,280	58,517	460	17,122	941	107	3,715	5,356	157,221	58,624	4,175	22,478
1996	182,749	88,878	457	12,168	617	72	3,132	4,271	183,366	88,950	3,589	16,439
1997	242,941	99,901	1,279	19,809	445	148	3,491	5,263	243,386	100,049	4,770	25,072
1998	279,510	84,781	1,176	38,114	326	204	4,910	5,812	279,836	84,985	6,086	43,926
1999	232,156	98,698	2,743	50,441	971	448	5,129	6,624	233,127	99,146	7,872	57,065
2000	296,880	119,491	3,065	19,971	390	191	4,662	6,996	297,270	119,682	7,727	26,967
2001	191,515	110,404	1,206	26,830	316	154	3,449	6,739	191,831	110,558	4,655	33,569
2002	376,510	90,908	1,757	22,820	642	1,019	4,330	5,931	377,152	91,927	6,087	28,751
2003	333,307	95,316	695	29,972	657	2,737	4,189	6,920	333,964	98,053	4,884	36,892
2004	257,253	53,366	1,122	22,990	570	1,140	3,968	7,484	257,823	54,506	5,090	30,474
2005	228,335	61,204	2,306	22,897	1,085	2,459	3,596	6,707	229,420	63,663	5,902	29,604
2006	258,287	104,327	745	23,078	1,045	2,490	3,874	7,705	259,332	106,817	4,619	30,783
2007	314,918	82,927	742	43,011	2,356	2,424	4,722	8,964	317,274	85,351	5,464	51,975
2008	203,607	69,592	1,998	23,519	2,168	2,429	3,791	8,380	205,775	72,021	5,789	31,899
2009	253,650	118,876	1,144	79,310	1,531	2,287	3,816	7,556	255,181	121,163	4,960	86,866
2010	278,427	44,467	861	27,802	897	1,760	4,055	7,265	279,324	46,227	4,916	35,067
2011	261,153	55,937	703	50,426	780	1,467	4,185	8,369	261,933	57,404	4,888	58,795
2012	488,473	83,171	165	16,234	701	1,535	4,330	7,137	489,174	84,706	4,495	23,371
2013	329,031	76,117	442	33,633	460	1,142	2,861	7,504	329,491	77,259	3,303	41,137
2014	326,134	83,241	82	55,114	809	2,021	2,893	6,407	326,943	85,262	2,975	61,521
2015	383,295	24,441	174	59,497	866	3,003	2,780	6,409	384,161	27,444	2,954	65,906
2016	167,163	34,683	1,257	43,979	2,028	2,481	3,155	6,406	169,191	37,164	4,412	50,385
2017	230,363	38,897	427	34,128	1,363	2,373	3,022	4,625	231,726	41,270	3,449	38,753
2018	124,267	9,824	237	19,685	1,826	1,516	2,073	4,563	126,093	11,340	2,310	24,248

Table 2 Continue

Year	Area 2				Area 4				Area 5			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1976	55,195	1,881	3,359	30,227	62,719	3,175	2,019	14,736	36,240	0	4	97,301
1977	105,097	1,496	1,396	15,216	65,983	2,151	3,390	27,942	24,419	0	642	88,838
1978	40,558	1,471	2,444	10,606	141,709	5,799	6,659	14,137	8,353	0	2,781	48,266
1979	42,485	1,416	508	10,007	101,422	10,063	3,453	21,858	55,046	111	1,755	63,491
1980	57,895	1,907	440	12,767	87,044	6,954	1,284	19,986	27,886	144	308	173,830
1981	54,601	2,002	2,105	21,375	160,643	13,413	1,884	25,336	58,905	1,320	5,119	153,713
1982	48,263	2,103	1,879	5,252	161,754	9,848	618	10,583	86,780	76	571	65,358
1983	18,589	1,825	4,061	9,661	95,066	9,518	3,869	19,747	39,965	60	2,833	140,450
1984	30,071	2,949	3,827	9,028	83,650	9,327	1,076	7,715	120,964	28	320	157,562
1985	11,648	1,622	854	6,396	35,671	10,701	3,325	20,333	94,634	0	384	138,886
1986	23,383	1,083	4,321	7,019	89,244	10,178	2,327	9,914	39,919	73	350	48,471
1987	17,886	1,645	1,642	5,234	28,114	5,380	1,530	9,732	42,717	2,458	465	110,757
1988	8,798	798	2,056	4,480	29,807	5,485	1,783	7,918	43,570	0	405	105,781
1989	13,647	741	1,920	1,994	29,000	5,494	1,975	9,991	76,953	120	148	60,436
1990	11,719	134	1,108	1,027	36,936	3,294	384	4,504	93,184	67	0	86,645
1991	15,210	940	2,243	2,541	38,011	6,780	985	7,225	121,525	1	41	103,980
1992	6,206	333	600	5,483	46,345	2,079	2,474	8,933	42,330	0	0	144,388
1993	16,410	3,328	1,574	13,080	76,992	3,649	842	9,394	62,142	0	11	175,003
1994	46,953	4,981	17,713	44,521	72,384	2,874	2,458	13,832	67,564	0	- 1	61,611
1995	97,511	12,826	21,342	30,369	68,111	6,832	6,530	30,063	51,367	0	0	45,514
1996	97,700	32,279	34,419	63,053	90,434	6,502	6,537	32,617	50,463	0	34	59,030
1997	94,456	44,742	34,477	46,018	117,748	17,904	3,192	34,862	44,107	402	0	64,343
1998	134,522	48,048	42,511	59,700	76,945	12,856	6,647	31,117	11,462	0	177	56,645
1999	121,861	37,514	36,563	87,831	63,829	25,791	9,773	27,024	33,488	0	1,847	38,640
2000	205,726	94,755	63,485	80,533	75,413	6,440	12,883	50,455	5,492	0	27	12,606
2001	221,677	97,497	31,506	51,382	93,516	19,336	27,234	39,835	15,890	0	0	47,034
2002	122,870	44,856	11,347	35,363	117,508	9,428	4,035	14,138	6,262	0	0	13,148
2003	157,287	32,456	28,645	35,885	30,197	2,099	1,264	3,750	1,175	0	48	12,503
2004	64,280	34,663	19,897	30,550	29,452	711	509	15,597	2,548	0	0	774
2005	92,072	42,353	27,996	47,059	32,732	2,696	4,905	6,317	160	0	10	9,009
2006	120,978	53,160	10,817	35,301	25,377	6,049	9,736	3,774	1,176	0	0	591
2007	97,002	42,100	22,224	20,206	15,934	1,659	1,293	963	1,753	0	28	374
2008	99,362	53,439	38,565	22,068	34,498	2,175	6,571	9,851	24,886	0	39	2,274
2009	118,355	52,991	34,681	43,937	11,372	547	7,802	2,440	1,037	0	206	11
2010	176,961	112,287	60,229	32,191	3,419	2,144	907	9,775	0	0	11	9
2011	142,618	85,542	19,428	35,945	26,941	2,724	12,431	9,178	0	0	25	3
2012	128,913	82,268	37,110	28,672	21,023	1,642	7,105	15,355	0	0	24	0
2013	105,109	91,626	61,215	24,177	27,648	2,006	4,912	7,729	0	0	38	9,152
2014	78,532	97,084	59,928	45,917	20,495	1,288	2,164	3,366	1,433	0	82	0
2015	165,655	90,455	52,249	36,075	7,843	587	5,330	2,011	0	0	0	0
2016	77,485	94,049	41,206	32,550	10,198	1,184	8,575	336	0	0	0	0
2017	104,908	59,672	42,835	76,277	4,006	2,413	13,864	1,442	0	0	0	382
2018	113,588	94,650	44,193	51,659	4,085	460	799	2,600	0	0	0	9

Table 3 Abundance indices for albacore caught by the Japanese longline fisheries in area 2 and area $1 \& 3$ between 1996 and 2018.

Year	Ochi et al. 2017		Present study			
	Area 2, Quarter 1		Area 2, Quarter 1		Area 1\&3, Quarter 1	
	StdCPUE	CV	StdCPUE	CV	StdCPUE	CV
1996	46.81	0.11	43.15	0.09	57.90	0.12
1997	53.34	0.11	50.04	0.10	97.98	0.11
1998	55.12	0.10	50.61	0.10	79.24	0.11
1999	42.45	0.11	38.51	0.10	52.34	0.12
2000	57.79	0.10	53.04	0.10	55.07	0.12
2001	51.05	0.09	47.35	0.10	35.00	0.12
2002	34.12	0.10	31.99	0.10	58.93	0.12
2003	38.14	0.10	35.64	0.10	61.89	0.12
2004	27.11	0.10	25.64	0.09	30.86	0.11
2005	36.48	0.11	33.39	0.10	33.00	0.11
2006	39.27	0.11	36.33	0.09	35.82	0.11
2007	35.14	0.10	31.75	0.11	51.97	0.11
2008	36.46	0.10	33.18	0.11	31.22	0.13
2009	37.04	0.10	34.45	0.09	35.39	0.13
2010	43.38	0.11	40.30	0.11	34.08	0.12
2011	33.12	0.10	31.30	0.11	28.54	0.11
2012	34.21	0.10	31.34	0.09	52.27	0.12
2013	32.83	0.11	29.24	0.10	34.36	0.11
2014	23.97	0.10	22.75	0.11	33.82	0.11
2015	41.13	0.10	41.26	0.09	48.70	0.11
2016			25.92	0.10	26.16	0.11
2017			27.33	0.11	34.66	0.11
2018			31.02	0.10	21.19	0.12

Appendix

A. Decadal spatial distributions of (a) albacore catch, (b) effort (number of hooks), and (c) CPUE (catch/effort*1000) in area 4 that were aggregated by 5×5 degrees during 1976-2018. From the top figures, quarter 1, quarter 2, quarter 3, quarter 4 are shown.

Quarter 1

Quarter 2

Quarter 3

Quarter 4

B. Decadal spatial distributions of (a) albacore catch, (b) effort (number of hooks), and (c) CPUE (catch/effort*1000) in area 5 that were aggregated by 5×5 degrees during 1976-2018. From the top figures, quarter 1, quarter 2, quarter 3, quarter 4 are shown.

Quarter 1
(a) Albacore catch
(b) Longline effort
(c) CPUE

Quarter 2

> (a) Albacore catch
(b) Longline effort
(c) CPUE

Quarter 3
(a) Albacore catch
(b) Longline effort
(c) CPUE

Quarter 4
(a) Albacore catch
(b) Longline effort
(c) CPUE

[^0]: This working paper was submitted to the ISC Albacore Working Group Intercessional Workshop, 12-18
 November 2019, held at the National Research Institute of Far Seas Fisheries, Shizuoka, Japan.

