An MSE for Pacific Sardine

André E. Punt School of Aquatic and Fishery Sciences University of Washington

16 April 2014

Fisheries Management (or what goes up must...)

Murphy (1966) & Hill et al. (2009)

Fishery Development and Management-I

- Fishery developed during World War I
- Peak catch over ~700,000t (largest fishery in the western hemisphere in the 1930s and 1940s).
- Southeast shift in catch as fishery collapsed.
 Landings stopped in
 - 1947-48 in the Pacific Northwest
 - 1953-52 off San Francisco

Fishery Development and Management-II

- In the early 1980s, sardines were taken incidentally with Pacific and jack mackerel
- Incidental fishery for sardines ended in 1991
- Management authority for the fishery transferred to the Pacific Fishery Management Council (PFMC) in January 2000
- The Coastal Pelagic Species Management Plan includes:
 - Pacific sardine, Pacific mackerel, jack mackerel, anchovy, market squid

Pacific Sardine Recovery and Expansion

<u> 1980s:</u>

low abundance, confined to SCA; minor fisheries in SCA & Mexico

L990s:

- Expansion offshore and north to Central California;
- CCA fishery begins;
- Pop'n growth = 33%;
- Sardine in Oregon Washington and Canada

<u>2000s:</u>

- Fisheries in PNW
 - Seasonal movements N-S, inshore/offshore

British Columbia

Washington Oregon

2000s

Monterey

San Pedro

Ensenada

Challenges for Assessment and Management-I

- Multinational fishery:
 - US, Mexico, Canada
- Time-varying migration
- Multiple fisheries in the US (Southern California, Central California, Pacific Northwest)
- Environmental-related variation in biomass

Challenges for Assessment and Management

Extreme population variability even in absence of fishing;
periods of peak abundance ~ 50-60 years
link to environmental forcing is assumed
Typical population dynamic for an 'R-selected' species:
small body, rapid growth, early maturation, high fecundity, short generation time, and the ability to disperse offspring widely

7

Northern Subpopulation Distribution Fishing Areas, & Modeled Fleets

> Summer/Fall (Feeding)

Winter/Spring

(Spawning)

Vancouver Island (BC)

Washington (WA)

Oregon (OR)

PacNW Fleet

MexCal Fleet

Monterey Bay (CCA)

So. Calif. (SCA)

Ensenada (ENS)

Southern subpopulation

NSP Distribution & General Survey Areas NWSS Aerial Survey (summer):

Vancouver Island (BC)

Washington (WA)

Oregon (OR)

Summer ATM Surveys: 2008, 2012, 2013

2009-2012

Monterey Bay (CCA)

So. Calif. (SCA)

Ensenada

(ENS)

SWFSC Spring Survey: DEPM/TEP 1994-2013; ATM 2006-2013

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 9

Estimated Stock Biomass Series from Base Model and Previous Stock Synthesis Models

Harvest Control (US)

 $HG_{2010} = (BIOMASS_{2009} - CUTOFF) \bullet FRACTION \bullet DISTRIBUTION$

To determine an appropriate (sustainable) FRACTION value:

 $F_{MSY} = 0.248649805(T^2) - 8.190043975(T) + 67.4558326$

where T (°C) is the running average sea-surface temperature at Scripps Pier during the three preceding seasons (July-June), and exploitation FRACTION is bounded between 5% and 15%. Maximum catch allowed = 200,000 mt

Stock biomass (age 1+, mt)	Cutoff (mt)	Harvest Fraction	U.S. Distribution	U.S. Harvest for 2011 (mt)
537,173	150,000	0.15	0.87	50,526

Pacific Sardine: Management Process (Amendment 8 & 13)

The HG is set following this basic process

Risk Assessment Framework

Performance measures

The performance measures are selected to quantify performance relative to [some] management goals.

- Average catch (total)
- Average population size (1+ biomass)
- Probability [total] catch is less than some threshold (e.g. 50,000t)
- Probability 1+ biomass is below a threshold.

Modeling environmental drivers

Fit the environmental variable to the ERSTT time series

Performance depends on the values for the parameters determining, for example, how the environment impacts recruitment.

<u>Key Major Sensitivity</u>: The assumption everyone follows the US control rules (for this test Mexico and Canada are assumed to have a constant fishing mortality rate no matter what)

Control Rules and MSE-I

- Design of the operating model
 - Single-species: Workshop with Council involvement (Council members, staff, SSC, advisory bodies)
 - Multi-species: Ongoing currently being funding through a Packard grant
 - Operating model reviewed by the Council
 Scientific and Statistical Committee (SSC)
- Selection of OFL control rules: the SSC!

Control Rules and MSE-II

- Selection of HG control variants:
 - Initially based on those considered when the current Harvest Guideline control rule was adopted
 - Additional options added by:
 - The Coastal Pelagic Species management team
 - The public (via the Council)
 - Software made available to the public who provided suggestions based on their analyses.

Control Rules and MSE-III

- Performance measures for the MSE:
 - Initially based on those considered when the current Harvest Guideline control rule was adopted
 - Performance statistics added based on input from the:
 - Coastal Pelagic Species Management Team,
 - Coastal Pelagic Species Advisory Subpanel, and
 - Public (NGOs, industry).

Questions?

Benthocodon